

EliteSeries
Release 9.5

TECSYS Developer Guide - iTopia Framework

EliteSeries, Release 9.5 2 TECSYS Developer Guide - iTopia Framework

Copyrights and Trademarks TE-CAK950 – May 2017

Copyrights and Trademarks

 2017 TECSYS Inc. All rights reserved.

This publication is owned and copyrighted by TECSYS Inc. and may not be copied, reproduced, redistributed,

transmitted, published, broadcast, or transferred in any form and under any circumstances without the prior written

consent of TECSYS Inc. All names, products, and services mentioned are registered or unregistered trademarks of

their respective owners.

This publication contains information that is proprietary to TECSYS Inc. The information contained in this

publication is considered CONFIDENTIAL according to the TECSYS Inc. confidentiality policy and agreements.

No part of this publication shall be copied, reproduced, redistributed, transmitted, published, broadcast, transferred,

or otherwise disclosed to anyone other than the organization or specific individuals to which this publication is

delivered, and then only for the purpose of the management of the specific TECSYS Inc. product to which it applies

and is subject to the confidentiality covenant undertaken by the recipient in the agreements between the parties.

TECSYS Inc. reserves the right to have the recipient return all copies of this publication at any time.

This publication is furnished for informational use only and should not be construed as a commitment by TECSYS

Inc. The information it contains is provided “as is” without warranty of any kind, either expressed or implied,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. This

publication may include technical inaccuracies or typographical errors. Inaccuracies and/or errors contained in this

publication shall not be made the basis for any claim, demand, or cause of action against TECSYS Inc.

TECSYS Inc. may make improvements and/or changes in the products and/or the resources described in this

publication at any time without notice at its sole discretion. These improvements and/or changes may or may not be

reflected in the current edition of this publication. TECSYS Inc. reserves the right to update the content of this

publication to reflect such improvements and/or changes at any time without notice at its sole discretion.

Any use of the information, procedures, processes, methods, and/or techniques contained herein remains the client’s

sole responsibility and depends upon the client's ability to evaluate and integrate them into the client's operational

environment.

Any references in this publication to third-party Web sites do not in any manner serve as an endorsement of those

Web sites. All Web site references and links are provided for the client’s convenience and the client therefore

accesses them at their own risk.

Printed in Canada.
May 2017

TE-CAK950

Corporate Headquarters:

TECSYS Inc.

1 Place Alexis Nihon

Suite 800

Montreal, Quebec

Canada H3Z 3B8

 1-514-866-0001

1-800-922-8649

 1-514-866-1805

 documentation@tecsys.com

mailto:documentation@tecsys.com

EliteSeries, Release 9.5 3 TECSYS Developer Guide - iTopia Framework

Table of Contents TE-CAK950 – May 2017

Table of Contents

1 Introduction ..7
1.1 About this Guide .. 8
1.2 Intended Audience ... 8
1.3 Conventions ... 8
1.4 Getting Customer Support ... 9

2 Architecture Overview ..10
2.1 iTopia Clients .. 11

2.1.1 WUI Client ... 11
2.2 Meta Database ... 11

3 User Management System ...12
3.1 Authentication ... 12
3.2 Extension Type Overview ... 12
3.3 Sessions ... 14

3.3.1 Session Life Cycle—Timeout and Keep Alive .. 15
3.3.2 Session Life Cycle – Keep Me Logged In.. 15
3.3.3 Session Life Cycle – Termination of a Session .. 16

3.4 Session Applications.. 16
3.4.1 Session Application Locks ... 17
3.4.2 Session Application Life Cycle—Timeout and Keep Alive 17
3.4.3 Session Application Cleanup .. 18

3.5 Resource Authorization ... 19
3.6 Custom Resource Extension & Framework .. 20

4 Meta Engine—View-Based Queries and Maintenances ...20
4.1 Preliminaries .. 20

4.1.1 Data Type Formats ... 20
4.1.2 Relationships and Related Concepts .. 21
4.1.3 Processing Instructions ... 23
4.1.4 Transactional Views and Related Concepts ... 25
4.1.5 View Authorization .. 26
4.1.6 View Component Overview ... 27
4.1.7 Extension Type Overview .. 29

4.2 View Functionality and Extension Points ... 40
4.2.1 Search ... 40
4.2.2 Get Row .. 41
4.2.3 Get Column Default Values ... 41
4.2.4 After Field .. 41
4.2.5 Validate Row .. 42
4.2.6 Modify Row.. 42
4.2.7 Create Row ... 43
4.2.8 Delete Row ... 44

4.3 Actions ... 44
4.3.1 QuickLoad .. 45
4.3.2 MetaRowBasedUpdateFieldAction (New Action Type)..................................... 46

4.3.2.1 Setup .. 46

EliteSeries, Release 9.5 4 TECSYS Developer Guide - iTopia Framework

Table of Contents TE-CAK950 – May 2017

4.3.2.2 Action Definition ... 47
4.4 Optimizing Your Code .. 48

4.4.1 Table Object Trusted Data Flag ... 48
4.4.2 Table Object Search with Iterable Result Set ... 49
4.4.3 Dedicated Resources for Queues .. 49

5 Service Implementations ...50
5.1 Connection Management ... 50
5.2 Creating Services ... 51
5.3 Service Housekeeping Duties .. 51
5.4 Transaction Management Standards .. 52
5.5 Command Pattern .. 52
5.6 EJB Resource Managed Command—for Read Only Operations 52
5.7 EJB Resource Managed Transactional Command—for Update Operations..................... 54

6 Transaction Management ...56
6.1 Isolation Level ... 56
6.2 Locking .. 56

6.2.1 Database Locks ... 57
6.2.2 Application Locks .. 57

6.3 Commit and Rollback Listeners .. 58
6.4 Updating a Secondary Database .. 59

7 Global Transaction Logs ...60
7.1 Reference ID .. 61
7.2 Helper API ... 61

8 Appendix—Extension API Listing ...62

9 Index ..63

EliteSeries, Release 9.5 5 TECSYS Developer Guide - iTopia Framework

Table of Figures TE-CAK950 – May 2017

Table of Figures

Figure 1: Architecture Overview ... 10

Figure 2: List of views on ice tables ... 27

Figure 3: A view’s Search page, showing two criteria fields and four result columns 28

EliteSeries, Release 9.5 6 TECSYS Developer Guide - iTopia Framework

Table of Tables TE-CAK950 – May 2017

Table of Tables

Table 1-1: Typographical conventions ... 9

Table 1-2: Symbol conventions .. 9

Table 4-3: Internal and Display Formats for Various Data Types .. 21

Table 4-4: Processing Instruction Types .. 24

EliteSeries, Release 9.5 7 TECSYS Developer Guide - iTopia Framework

Introduction TE-CAK950 – May 2017

1 Introduction

The iTopia® framework provides the benefits of using a robust, tested, tuned, feature-rich platform for

rapid application development. Many of the core benefits come from having a single implementation

power hundreds of query and maintenance programs.

The iTopia framework is metadata-driven—a metadata definition describes the application database’s

schema in terms of the typical database constructs: tables, columns, data types, primary keys, foreign

keys, and so on. The metadata informs iTopia on how to interact with the database, enabling it to query

and update the data. It also goes far beyond the typical scope of database metadata, allowing the

definition of expression columns (whose values are calculated by a database query), extension columns

(whose values are calculated by a Java class), iTopia views, and more. The metadata definitions are

stored in the Meta database.

Once the metadata has been defined for a given application database, the iTopia framework provides a

generic implementation of many basic and advanced features, such as table queries, table maintenances,

data validation, view customization, linking, and so on. If particular business rules are required, they are

added through a mechanism called extension points. The iTopia framework will apply extension logic at

these precise points to allow the generic implementation to be supplemented with non-generic, or custom,

business logic.

Extensions are Java classes containing business logic that applies to a specific business context, such as a

particular table or field in a table1. Here is an example that illustrates this concept:

An order entry system has an order table that represents orders. This table has a Requested Delivery

Date column that stores the date the customer requested the order be delivered. When a user enters

orders into the system, generic iTopia validations will ensure that the value entered by the user is a

valid date, however, custom business logic is required to ensure the value meets certain extra

requirements, for example, that the date provided must be at least one day after the current date. This

custom Requested Delivery Date validation is supplied in an extension class.

There are extension points defined for field defaulting, formatting, validation, disabling, and for pre and

post table inserts, updates, and deletes, to name a few. Each extension point has an API in the form of a

Java interface class that defines what the extension can do at that particular point. The extension point

API both enables and restricts the developer—it enables the injection of business logic, but it also restricts

how and where and what business logic may be applied. It does so to ensure that the developer can easily

do what the extension point was intended for, and cannot do something that the iTopia framework does

not expect and cannot handle.

In addition to the API, the iTopia development standards must be followed. These standards enforce rules

that are not enforced by the API. Therefore, it is up to the developer to follow these standards which

ensure consistency across the application and a healthy interaction with the iTopia framework.

1 Extensions are dynamically loaded by the framework based on a naming convention and a
defined interface. Therefore, when iTopia is validating data for a particular table, it will
attempt to load a class whose name contains the table name and follows the naming
convention. If a class with that name is found, it will invoke the appropriate method in it.

EliteSeries, Release 9.5 8 TECSYS Developer Guide - iTopia Framework

Introduction TE-CAK950 – May 2017

1.1 About this Guide

This document will cover the iTopia framework fundamentals as a foundation for application

development.

• The concepts of the user session and session application

• The business logic (or EJB) layer responsibilities and standards

• The various iTopia extension points.

• Application integration strategies and tools.

This document assumes the reader is familiar with iTopia features and its administration. In particular,

the following iTopia training courses are prerequisites:

• How to Use iTopia

• iTopia Administration

• iTopia Metadata Development

This document complements the following iTopia training courses:

• iTopia Extension Development I—Basic

• iTopia Extension Development II—Advanced

This document complements the iTopia extension point training and the table object developer guide.

1.2 Intended Audience

This guide should be used by application developers who are basing their development on the iTopia

framework.

1.3 Conventions

This topic describes the conventions dictating the use of certain text elements and symbols within this

document.

Convention Definition

Text that appears in this Times New Roman font The default font that is used for regular body text.

Text that appears in this Arial font Titles of chapters, headings and subheadings, captions, and static

elements that define the structural organization of this document.

Text That Appears in Title Text View names and resource names. Page names, page section titles,

subview titles, related resource titles, and tab titles from dialog pages.

Field names and valid field values and/or descriptions, when these are

in the process of being described or when direct cross references are

made.

 Table names appear in regular case.

Text that is underlined Topic or document cross references, either internal or external.

TEXT THAT IS IN SMALL CAPS Keys that you press on a keyboard.

EliteSeries, Release 9.5 9 TECSYS Developer Guide - iTopia Framework

Introduction TE-CAK950 – May 2017

Convention Definition

Text that is bolded Actions (generally buttons) and links that you click to select. Textual

equivalent of certain icons (e.g. the Graph icon) that must be clicked to

perform a given action.

Text that is italicized Terms or expressions on which you have placed emphasis.

Table 1-1: Typographical conventions

Symbol Definition

 Note

 Warning

 Start of a procedure

Table 1-2: Symbol conventions

1.4 Getting Customer Support

Should you need assistance beyond what this guide can provide, contact our Software Assistance Help

Desk. TECSYS trained professionals may be reached at 1-888-TECSYS5. Before you call TECSYS

Software Assistance, please perform the following steps:

• Check the documentation to ensure that the information you require has not already been supplied.

• Write down a detailed description of your problem or query, to assist you in describing the issue over

the phone. Please note any error messages that are displayed on your screen.

EliteSeries, Release 9.5 10 TECSYS Developer Guide - iTopia Framework

Architecture Overview TE-CAK950 – May 2017

2 Architecture Overview

An iTopia-based application is deployed on a JEE application server, typically JBoss. It two layers—a

presentation layer, which contains servlets and JSPs, and serves clients, and a business logic layer, which

loads the application extensions and interacts with the database. These application server layers are

depicted below. In the diagram, each app extension box (there’s one for Meta, DMS, WMS, and TMS)

represents all the extension classes of that application.

Figure 1: Architecture Overview

EliteSeries, Release 9.5 11 TECSYS Developer Guide - iTopia Framework

Architecture Overview TE-CAK950 – May 2017

2.1 iTopia Clients

The iTopia framework generates a web user interface client (WUI client) that runs in a web browser. The

WUI client is the most common way of interacting with the system. There are several other possibilities,

including third-party integration clients (referred to as external system in the diagram above). Third-party

integration involves building a client so that another system can interact with the iTopia application via a

web services client or via the queue-based services.

2.1.1 WUI Client

The WUI client consists of the following:

• The login screen

• The portal, which provides a menu and search capabilities for the various resources

• View-based resources

• Workflow resources

• Various resources for administering the system

The WUI client can operate in several modes:

• Desktop

o Designed for laptops and desktops

• HH

o Designed for small, but can also run on a laptop or desktop

2.2 Meta Database

The Meta database is a crucial component of the iTopia framework. It stores metadata that informs iTopia

on how to interact with the application database, and is used by iTopia to store session information, user

management information, and more.

EliteSeries, Release 9.5 12 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

3 User Management System

3.1 Authentication

The system requires the user be authenticated before access to the system is given. Authentication is

based on a username and password.

3.2 Extension Type Overview

The following types of extensions are available in the User Management System.

Session Extension

A session extension corresponds to an md_database record (which corresponds to an application, such as

DMS or TMS), and implements business logic related to user login, session initialization, and logout for a

given application. The session extension interface is the following:

 com.tecsys.ums.api.ep.UmsApiSessionExtension

Session extensions have the following naming convention, where databaseName is the name of the

application database.

 com.tecsys.databaseName.ext.api.session.ApiSession_databaseName

Session Application Cleanup Extension

A session application cleanup extension, also called a cleanup instruction, can be created to ensure certain

cleanup duties are performed prior to a session application being unregistered. More on a session

application’s responsibilities in section 3.4. The session application cleanup extension interface is the

following:

 com.tecsys.ums.api.ep.UmsApplicationCleanupExtension

Session application cleanup extensions do not have a naming convention as the class name is explicitly

identified when the cleanup instruction is added.

EliteSeries, Release 9.5 13 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

Custom Resource Extension

A custom resource is a resource launched from the portal that is backed by extension code, but is not

based on an iTopia business view; therefore, the business logic, usability, and even the UI content is

implemented in a mostly2 free-form fashion.

The custom resource extension interface consists of the public abstract API declared in the following

abstract handler class:

 com.tecsys.ums.web.UmsCustomResourceHandler

Custom resource handler extensions have the following naming convention, where databaseName is the

name of the application database.

 com.tecsys.databaseName.ext.web.WebHandler_extensionSuffix

The database combined with the extensionSuffix must form the resource name, as stored in the UMS.

 resourceName = databaseName_extensionSuffix

2 There is still a basic framework that helps and guides these implementations.

EliteSeries, Release 9.5 14 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

3.3 Sessions

When a user logs on to the system, a session is created, and all activity performed by the user is

associated with that session until the session is terminated, typically when the user logs off. The session

is represented in the Meta database as a record in the md_session table, and it is represented in memory in

the form of an access token. The access token represents an authenticated user session and is passed

along throughout the code with every request the user makes, allowing the system to identify the user, and

keep track of information associated with the current user session.

Depending on how the session is created, the information is logged in the Session Type field of the

md_session table following this convention:

• Interactive: Desktop, Voice, Handheld

• Background Service: queues, timers, tasks

• Web Services

• Not Applicable

During the login process, the name of the client machine is fetched and stored as a session attribute.

Session attributes are stored in the md_session_att table, which contains key-value pair information for

each session. The client machine name is stored using the meta_client_computer_name key.

After login, the system may immediately prompt the user to enter or accept session parameter values,

which can be used as defaults and configuration settings for that session. These values may also be stored

as session attributes.

In the above process there are several (session) extension points:

• login —invoked after all validations and the session record is created.

• getSessionParameters—invoked prior to the display of the session parameters page. This allows an

extension to prompt the user for session defaults or configuration values.

• processSessionParameters—invoked after the user has filled in the session parameters page. This

allows an extension to process the session defaults and configuration values it prompted for. One

common use it to create session attributes for those values.

• logout—invoked after all session applications are unregistered, and before the session record is

deleted.

EliteSeries, Release 9.5 15 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

3.3.1 Session Life Cycle—Timeout and Keep Alive

The session timeout occurs when the session has been inactive for a preconfigured amount of time. When

that threshold is reached, it will shortly thereafter be logged out by a background process.

The default session timeout is configured in the User Inactivity Timeout of the md_user table. The default

value is set to Two Hours and it is used when the value is set to “User Default” in User Inactivity

Timeout. The system uses this timeout to trigger the expiration of the session.

The session is kept alive via the following method, which updates the session’s last access time:

com.tecsys.ums.api.UmsWacService

 public void keepAlive(UmsAccessToken accessToken)

 throws UmsInvalidAccessTokenException;

Within the WUI client, every action taken by the user sends a signal to the server which causes this

method to be invoked, ensuring the session does not time out. If the user does not interact with the

application for the duration of the timeout (two hours by default) then the session will be logged out

automatically by a background process.

The Timeout On field of the md_session table indicates when the session will become inactive if the

client does not send keep alive signals to the system.

3.3.2 Session Life Cycle – Keep Me Logged In

The session timeout can be configured to last longer. When logging in, the user has the ability to decide to

avoid his session from timing out for a longer time than usual. The user wants the system to keep him

logged in.

The default session timeout when using Keep Me Logged In is the same value as the value used for the

session timeout defined in the User Inactivity Timeout field of the md_user table. The value can be

configured up to Two Weeks.

This feature is currently only available through the usage of Web Services. When using the login Web

Service method, the tag <keepMeLoggedIn>1</keepMeLoggedIn> has to be provided so that the session

will be open for a longer timeframe.

EliteSeries, Release 9.5 16 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

3.3.3 Session Life Cycle – Termination of a Session

Sessions can be terminated by the system if the session times out or it can be terminated by a user with

the appropriate permissions by accessing a view on md_session and using the Terminate Action.

Session records in md_session are not deleted when timing out. The Termination Action of the

md_session table depending on various reasons:

Termination Action Reasons

Not Terminated The session still active and not terminated yet.

User Requested The session is terminated by user using the Logout action.

Administrator Requested The session is terminated by using the Terminate Session action in

Session.

Oldest Session Terminated The session is terminated by system as the user exceeded the maximum

number of session allowed. This restriction is imposed by the licensing.

In such case the oldest session of that user is automatically

terminated/logout.

Expired Session Terminated The session is terminated by system session cleanup as the session

inactivity timed exceeded the session timeout.

Terminated by System The session that are terminated by system. These are sessions which

were created by the system for background process.

When a session is terminated, the Terminated On field of the md_session table will be updated with the

time when the termination occurred.

Only a Terminated session can be deleted. A task exists to purge the terminated records in the

md_session table. It needs to be scheduled in order to clean up the oldest records.

3.4 Session Applications

A user running the WUI client in desktop mode will be able to launch multiple resources simultaneously,

each running in its own browser tab. Each of these tabs will register its own session application. A

session application provides a sandbox for its resource to operate in, ensuring the user’s activity in one

browser tab does not interfere with, or affect, that of another browser tab. Consider the following

example:

A user is updating sales order 524 in one tab and invoicing orders in another. The system prevents

the user from invoicing order 524 because that order is reserved by the session application associated

with its tab.

Every session application corresponds to a record in the md_session_app table. A session application can

have attributes much like a session can. The difference is one of scope: session attributes are applicable

session-wide whereas session application attributes apply to that particular session only.

EliteSeries, Release 9.5 17 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

Session applications are unregistered in the following circumstances:

• The user of the WUI client closes a resource (i.e. closes the browser tab);

• A programmatic client explicitly unregisters the application using the UmsWacService;

• During a logout (all of a session’s applications are unregistered during a logout);

• The session application times out.

3.4.1 Session Application Locks

A session application can hold locks on business data. Whereas a database lock is released when the

transaction is committed (or rolled back), the scope of an application lock can be much longer. It

indicates that the given application has a lock on a business entity, and that other applications may not

update or alter it. Not all business data is subject to application locks—only data within a transaction

entry point table may be application-locked. When a record in the entry point table is locked, the whole

identifying tree is considered locked. Session application locks are recorded in the md_lock table.

3.4.2 Session Application Life Cycle—Timeout and Keep Alive

The session application timeout occurs when the session application has been inactive for a preconfigured

amount of time. When that threshold is reached, it may be unregistered by a background application

cleanup process that executes periodically based on a timer.

The default session application timeout is configured in the Application Inactivity Timeout field of the

md_user table. The default value is set to Fifteen Minutes and it is used when the value is set to “User

Default” in Application Inactivity Timeout. The System uses this timeout to trigger the expiration of a

session application.

The session application is kept alive via the following method, which updates the application’s last access

time:

com.tecsys.ums.apiUmsWacService

 public void keepApplicationAlive(

 UmsAccessToken accessToken,

 UmsSessionApplicationId sessionApplicationId)

 throws UmsInvalidAccessTokenException,

 UmsInvalidApplicationException;

Within the WUI client, every tab periodically sends a signal to the server which causes this method to be
invoked, ensuring the application remains active. The signal is also sent every time a request hitting a

servlet is done by the client. If the client looses its network connection, or for some other reason stops

sending the keep alive signal, the application will time out and get unregistered.

EliteSeries, Release 9.5 18 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

3.4.3 Session Application Cleanup

A session application may have cleanup instructions. Cleanup instructions ensure that resources (such as

application locks) reserved by the application are released when the owning application is unregistered,

even if the termination is abnormal. If we take the application lock cleanup as an example, whenever an

application lock is obtained, a cleanup instruction is added for that session application, ensuring the

application will not be unregistered without the lock being released.

Developers may implement their own cleanup instructions. Some possible uses of cleanup instructions

include deleting data from work tables, of cleaning up files from disk, or resetting some business data. A

cleanup instruction often needs additional information to know what to do—this can be provided in the

form of application cleanup attributes. Cleanup instructions, and their attributes are added (registered)

using the UmsWacService’s addApplicationCleanup method, as exemplified below.

 UmsApplicationCleanup applicationCleanup = new UmsApplicationCleanup();

 applicationCleanup.setCleanupClass(IceCleanupExtension.class);

 applicationCleanup.addAttribute(

 IceCleanupExtension.ATTRIBUTE_KEY,

 someValue);

 try {

 getWacService().addApplicationCleanup(

 getAccessToken(),

 sessionApplicationId,

 applicationCleanup);

 }

 catch (UmsInvalidAccessTokenException e) {

 ...

 }

 catch (UmsInvalidApplicationException e) {

 ...

 }

EliteSeries, Release 9.5 19 TECSYS Developer Guide - iTopia Framework

User Management System TE-CAK950 – May 2017

3.5 Resource Authorization

When determining the resources to which a user has access, and the operations the user may perform on a

given resource, the following is considered:

Licensing

• Has the user been assigned a full license for the given database? A full license is required to execute

queries and updates.

• Has the user been assigned a read license for the given database? A read license is required to

execute queries. If the user has a full license a read license is not needed.

Role-Based Permissions

• Has the user been assigned a role with the appropriate permissions (read, execute, create, update,

delete, maintain list, customize)?

Row-Level Security

• Are there user domain restrictions that are limiting what data the user can see and modify? User

domain restrictions limit the user’s queries and what the user can update.

In addition, certain features are license-controlled. They are enabled and disabled system-wide:

Licensing

• Is the feature licensed? Features include ecom, graphing, rules engine, to name a few iTopia features.

Each application (dms, tms, wms) may have their own as well.

In fact, there are additional factors that are imposed at the application level. These are described in a later

section on Meta Engine view authorization.

EliteSeries, Release 9.5 20 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

3.6 Custom Resource Extension & Framework

The custom resource framework consists of the following key classes. Refer to their javadocs for further

information:

• com.tecsys.ums.web.UmsCustomResourceHandler

• com.tecsys.ums.web.UmsCustomResourceServlet

• com.tecsys.ums.web.UmsCustomResourceId

• com.tecsys.ums.web.UmsCustomResourceContext

• com.tecsys.ums.web.UmsCustomResourceCacheObject

• com.tecsys.ums.web.bean.UmsCustomResourceDataBean

• com.tecsys.ums.web.UmsCustomResourceUrl

The following custom resource handlers are suggested as reference implementations:

• com.tecsys.ice.ext.web.WebHandler_calc_weight

4 Meta Engine—View-Based Queries and Maintenances

A view is a particular kind of resource that supports customizable queries and maintenance screens. The

meta engine is the module of iTopia responsible for view-based operations such as searches and

maintaining data.

 All view-based searches and data maintenance run within the scope of an EJB implementation.

For this reason, it is important to be completely familiar with the concepts from section 5 Service

Implementations, especially those related to connection and transaction management.

4.1 Preliminaries

4.1.1 Data Type Formats

The metadata engine supports several data types, such as character, integer, date, and more. The date and

time types have configurable display formats. The display format is indicated in the Tecsys.properties

file.

The display format of the dates and the numeric can be changed by a user in its profile. It would then

override the default display format defined in Tecsys.properties.

general.date.display_format={month2}/{day2}/{year4}

#general.date.display_format={day2}-{month2}-{year4}

#general.date.display_format={year4}/{month2}/{day2}

general.number.digit_group_separator={period}

general.number.decimal_separator={comma}

The data formatting in the Web User Interface is different from the way the data is represented internally

in the system, and this matters for certain interfaces. The user interface displays and accepts the display

format, whereas data load, and programmer interfaces use the internal format.

EliteSeries, Release 9.5 21 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

The table below shows the display based on potential Tecsys.properties file configurations. The

timestamp, though not configurable, was included to illustrate that it is not affected by date formatting.

Data Type Display Format Internal Format

Date ({month2}/{day2}/{year4}) MM/DD/YYYY YYYY-MM-DD

Date ({day2}-{month2}-{year4}) DD-MM-YYYY YYYY-MM-DD

Date ({year4}/{month2}/{day2}) YYYY/MM/DD YYYY-MM-DD

Timestamp YYYY-MM-DD HH:MM:SS YYYY-MM-DD HH:MM:SS

Fixed Decimal (period digit group) 10.000,00 10000.00

Fixed Decimal (comma digit group) 10,000.00 10000.00

Table 4-3: Internal and Display Formats for Various Data Types

4.1.2 Relationships and Related Concepts

Understanding table relationship concepts is fundamental to understanding how iTopia operates.

Relationships describe what tables are related to each other, and how they are related. They

determine the scope of customization, the scope of transaction management, and the scope of parent-

maintained entities. These are all described in detail below.

Relationship

A relationship (md_relation and md_relation_col) is synonymous with a foreign key constraint3. It

indicates that a table has a foreign key to another table, the first being the child table and the later

being the parent table. The relationship must be based on a key (md_key and md_key_col) in the

parent table. Relationships enable iTopia to join two tables in SQL.

Optional Relationships

A relationship is flagged as optional (md_relationship.is_optional) when it supports orphaned records.

This means the child table’s relationship columns may have values that do not reference any record in

the parent table.

3 The foreign key need not be defined physically in the schema; it may exist only in metadata,
in which case it is referred to as a logical relationship.

EliteSeries, Release 9.5 22 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Cardinality

A relationship has one of three cardinalities (md_relationship.cardinality):

• Zero one or more (optionally one or more child records per parent)

• One or more (one or more child records per parent)

• Zero or one (at most one child record per parent)

The first two types are both refered to as “cardinality-many” to indicate the possibility of many child

records. The last type is referred to as “single-cardinality” to indicate there can be at most one child

record.

• Examples:

o The ice client_2_to_client relationship has zero or one cardinality.

o The ice sales_order_l_to_sales_order relationship has zero one or more cardinality.

Identifying Relationships

Identifying relationships indicate the child record “belongs” to the parent. For example, an order line

table would have an identifying relationship to an order table, and a non-identifying relationship to an

item table, because order lines belong to orders, but order lines do not belong to items.

The parent table of an identifying relationship is called the identifying parent, and the child table is

called the identifying child. Similarly, we can speak of identifying ancestor tables and identifying

descendant tables. A table may have at most one identifying parent, but may have many identifying

children.

Identifying Root Table

A table that does not have an identifying parent table is an identifying root table (or root table for

short). It may or may not be the identifying parent of other tables.

• Examples:

o The ice sales_order table is a root table.

o The ice sales_order_line is not a root table

Identifying Tree

The set of tables that are identifying descendants from a common root table, including the root table.

Since a table can have only one identifying parent, a table belongs to only one identifying tree.

 See the meta_md_table.identifying_tree resource for a graphical representation of an

identifying tree.

EliteSeries, Release 9.5 23 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Parent-Maintained Tables

When a table is flagged as maintained-by-parent (md_table.is_maint_by_parent), it is considered an

extension of its identifying parent, and it is always and only maintained via a resource on the parent

table. A view on a parent-maintained table is strictly read-only; the parent table’s resource must be

used to edit its data.

A parent-maintained table may be one of two types, determined by the cardinality of the identifying

relationship between parent and child table:

• Single-cardinality

o Example: In ICE, product_2 is a parent-maintained, single-cardinality child of product.

• Cardinality-many

o Example: In ICE, sales_order_l_lot is a parent-maintained, cardinality-many child of

sales_order_l.

A parent-maintained, cardinality-many table may be called a grid or maintained-grid for short.

4.1.3 Processing Instructions

Where can processing instructions be used?

• In a physical or an extension column’s default value (md_column.default_value)

• In an expression column’s default value (md_column.default_value)

• In a criteria value

o Criteria fields in the web UI

o Default criteria or permanent criteria in view personalization, in which case it is persisted to

md_criteria_usage.criteria_value.

o User domain restrictions (a form of row-level security), in which case it is persisted to

md_user_domain_rls

• In certain column and domain attributes

o Persisted to md_column_att and md_domain_att respectively.

• In notifications

o Persisted to md_notification.

• Rule conditions

• Tecsys.properties

o Display Format

o Browser Title

EliteSeries, Release 9.5 24 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

For each context, the availability of a given type of processing instruction should be indicated in the

application’s WebHelp. Here is a complete list of processing instructions.

Processing Instruction Replacing Value

{today} The current date

{current} The current time

{session.user} The current session’s user as recorded in md_session.user_name

{session.id} The current session ID as recorded in md_session.session_id

{session.locale} The user’s locale as recorded in md_user.locale_key

{session.xyz} The attribute value paired to the xyz key of md_session_att for the current session

{session.instance} The application server instance as recorded in md_app_server.instance_name

{session.timezone} The timezone identifier (e.g. EST, CST, ECT)

{session.timezonevalue} The offset of the user timezone compared with the server timezone

{cluster.instances} Match any instance in the current instance’s cluster as defined in md_app_cluster_server

{db.function} Supported functions include: concat, nvl, round, abs, today

{dbobject.dbName.objectName} References an object in the database

{column.xyz} References a column in the current table or the identifying ancestry where xyz is the

column name prefixed with the table name. Further restrictions may apply based on the

context.

{application.id} The current session application’s ID

{application.view} The current view name

{application.xyz} The attribute value paired to the xyz key of md_session_app_att for the current session

application

Table 4-4: Processing Instruction Types

EliteSeries, Release 9.5 25 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.1.4 Transactional Views and Related Concepts

Transaction Entry Point

A transaction entry point table is:

• a root table

• has a lock id column (see md_table_option)

• is flagged as a transaction entry point (md_table.trans_entry_point)

Such a table is the entry point for maintaining the entire identifying tree—meaning a lock must be

obtained on the entry point record before it or any of its child (or identifying descendant) records can

be created, updated, or deleted.

• Examples:

o The ice product table is a root table, but not an entry point.

o The ice sales_order table is an entry point table.

Transactional Views

A view on a table that belongs to the identifying tree of a transaction entry point.

• Examples:

o Any views on the ice product table are not transactional.

o Any views on the ice sales_order table are transactional.

o Any views on the ice sales_order_l table are transactional.

Transaction Hierarchy

A transaction entry point can have a transaction hierarchy associated with it—a set of views on the

entry point’s identifying tree that drive several features:

• Data loads and unloads via web services

• Data loads and unloads via queue-based services

The transaction hierarchy (md_trans, md_trans_view) identifies which views can and will be used in

these operations.

Transactionnal Navigation

There are 2 types of transactional navigation: Outgoing and Incoming.

Outgoing transactional navigation will determine where to go (which view) after hitting continue. For

example, if the user is in ice_sales_order_l and clikc continue, the outgoing transactional navigation

will determine if the next view is ice_sales_order or ice_sales_order_l_inst.

Incoming transactional navigation determine what view we display when loading a view. For

example, if the user is going to ice_client, the Incomig navigation will trigger and figure if we show

the client ice_client or ice_client.canada.

The important configuration are:

EliteSeries, Release 9.5 26 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

• Sequence: Determine the order in which the condition will be evaluated. It is possible for

multiple condition to be true. If that si the case, the lowest sequence one will be the one that

applies.

• Navigation type: Decide whether it is Outgoing or Incoming transacationnal navigation.

• Navigate-to View Name: The view where the user will be redirected.

• Condition: Separated in 4 columns. The first 3 are the database, table and column where to

find the value. The value is the condition to evaluate. It should be a QBE. For example, >100.

This means if that column’s value is greate than 100, then it will use the Navigate-to View

name of this entry.

4.1.5 View Authorization

Authorization is determined at multiple levels. Firstly, there is the UMS layer that determines

whether a user has been given the priviledges to access a resource and determine what operations the

user may perform against that resource. The UMS layer factors in licensing, permissions, and row

level security (see section 3.5 Resource Authorization). Secondly, there is the application layer,

which also restricts access, based on the state of the data and the application. For example, a closed

order cannot be modified even if the user has permission to modify orders.

EliteSeries, Release 9.5 27 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

At the application layer, the following is considered:

Permanent Criteria

• Does the view have permanent criteria defined? If so, it will restrict what the user can query and

update.

A Table’s Metadata

• Does the table allow create/update/delete? If the table does not support an operation, the user will

not be able to perform it regardless of permissions

Application Logic (Extension Code)

• Does the application restrict some operations when the data is in a certain state? For example, a

closed order cannot be modified, regardless of permissions.

4.1.6 View Component Overview

Views are table-centric, their functionality revolves around a particular table and the data in that table.

Views are typically named according to their main table. For example, in the figure below, we see

the Countries view is based on the country table.

Figure 2: List of views on ice tables

Simply put, views allow for querying and maintaining data in a given table. Although views can

support much more advanced or complex features, the building blocks are searching and data entry.

A view customization can include columns from related tables, but only the primary table, and its

parent-maintained tables will be maintainable in that view. Fields from other tables will be read-only.

EliteSeries, Release 9.5 28 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Views are complex structures, the terminology used to refer to various components of a view will be

the following:

• Criteria fields—the fields displayed on a Search page, which can contain QBE expressions, and

which get applied as criteria to the view’s queries.

• Result columns—the columns fetched by the queries, and displayed to the user in the results

section of the Search page.

• Detail fields—the fields fetched when displaying a single row in the Detail page or Create page

(i.e. key entry subview).

The figure below shows a view on the country table. This view has been customized to display two

criteria fields (Country and ConnectShip Country) and four result columns (Country, Description 1,

Description 2, and ConnectShip Country).

Figure 3: A view’s Search page, showing two criteria fields and four result columns

EliteSeries, Release 9.5 29 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.1.7 Extension Type Overview

The following four types of extensions are used by the Meta Engine in its query and maintenance

operations. Each has its own scope and level of granularity.

 Some extension APIs have multiple versions. The older ones are considered deprecated, and

only the most recent version of each API is covered here.

Domain Extension

Domain extensions correspond to an md_domain record, and implement domain specific validation

rules. Validation logic that is common to all columns belonging to that domain should be

implemented in a domain extension.

 com.tecsys.meta.api.ep.MetaApiDomainExtension

Domain extensions have the following naming convention, where databaseName is the name of the

application database, and domainName corresponds to md_domain.domain_name

 com.tecsys.databaseName.ext.api.domain.ApiDomain_domainName

Table Extension

Table extensions correspond to an md_table record, and implement table specific business logic,

which at its most basic means logic related to create, modify, delete, and search operations against the

table.

 com.tecsys.meta.api.ep.MetaNewApiTableExtension

Table extensions have the following naming convention, where databaseName is the name of the

application database, and tableName corresponds to md_table.table_name.

 com.tecsys.databaseName.ext.api.table.ApiTable_tableName

Parent-maintained tables do not have their own table extensions. Instead their business logic is

implemented in the parent table’s extension class.

EliteSeries, Release 9.5 30 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Column Extension

A column extension corresponds to an md_table record, the individual methods within it correspond

to md_column records. Those methods implement column specific business logic such as field

validation, disabling, and assist logic.

 com.tecsys.meta.api.ep_r2.MetaApiColumnExtensionR2

Assist logic updates a field’s value to correspond to another change. For example, when the customer

is changed on an order, the bill-to address is automatically updated to be the new customer’s address.

All column extensions use inter-column dependencies, meaning they declare what fields they are

dependant on, and the system uses that information to figure out when a field extension should be

invoked. In the previous example, the order’s bill-to address assist logic references the order’s

customer field, indicating that when the customer changes, the assist logic should fire.

Column extensions have the following naming convention, where databaseName is the name of the

application database, and tableName corresponds to md_column.table_name. The same extension

class is used for all columns belonging to that table, and to all its parent-maintained tables with 1-to-1

cardinality.

 com.tecsys.databaseName.ext.api.column.ApiColumn_tableName

As with table extensions, parent-maintained tables do not have their own column extensions, their

business logic is implemented in the parent table’s extension class.

Each column has its own method in the extension class, which also follow a naming convention. See

the javadocs on MetaApiColumnExtensionR2 for more details.

Lookup Extension

A lookup extension corresponds to an md_table record, the individual methods within it correspond to

md_column records. Those methods implement column specific logic that provides additional

criteria for lookups.

 com.tecsys.meta.api.ep.MetaApiLookupExtension

Lookup extensions have the following naming convention, where databaseName is the name of the

application database, and tableName corresponds to md_column.table_name. The same extension

class is used for all columns belonging to that table, and to all its parent-maintained tables with 1-to-1

cardinality.

 com.tecsys.databaseName.ext.api.lookup.ApiLookup_tableName

As with table extensions, parent-maintained tables do not have their own lookup extensions, their

business logic is implemented in the parent table’s extension class.

EliteSeries, Release 9.5 31 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Each column has its own method in the extension class, which also follow a naming convention. See

the javadocs on MetaApiLookupExtension for more details.

Through the lookup extension, it is possible to modify the default lookup, remove the lookup

completely or add multiple lookup at the same time.

Task Extension

A task extension correspond to an md_table_action. A task is a way to structure code that will process

data. So a task consistent of multiple steps that togheter achieve a speicifc goal.

 com.tecsys.meta.api.task.MetaAbstractTask

Task extensions have the following naming convention, where databaseName is the name of the

application database, and tableName corresponds to md_column.table_name. The tableAction

correspond a nd md_table_action record.

 com.tecsys.databaseName.ext.api.task.ApiTask_tableName__tableAction

Workflow

Workflow Extensions

The worklow defines a a sequence of operations designed to complete a specific task, where each task

is defined in a Workflow Step.

The workflow class must implement:

 com.tecsys.wf.api.ep.WfWorkflowExtension

The workflow extension class has the following naming convention, where databaseName is the

name of the application database, and template is the generic name of the workflow:

 com.tecsys.databaseName.ext.api.wf.ApiFlow_template

A workflow extension determines the next step by analyzing the exit status of the executed step. The

evaluation process is done in the evaluateNextStep method.

Example:

public WfEvaluateNextStepResponse evaluateNextStep(WfEvaluateNextStepRequest request) {

 WfEvaluateNextStepResponse response = new WfEvaluateNextStepResponse();

 WfStepStatus stepStatus = request.getStepStatus();

 // Get Step class

 WfStep stepClass = request.getStep();

 // Start - launch the initialize step

 if (stepClass == null) {

 return response.setStepClass(ApiStep_basic_recv__initialize.class);

EliteSeries, Release 9.5 32 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

 }

 // Step: RECEIVE

 if (stepClass.equals(ApiStep_ibo_recv__receive.class)) {

 if (stepStatus == WmsIboRecvReceiveEnum.REPEAT) {

 return response.setStepClass(ApiStep_ibo_recv__receive.class);

 }

 if (stepStatus == WmsIboRecvReceiveEnum.ITEM_DETAILS) {

 return response.setStepClass(ApiStep_ibo_recv__item_details.class);

 }

 else if (stepStatus == WmsIboRecvReceiveEnum.ORDER_DETAILS) {

 return response.setStepClass(ApiStep_ibo_recv__order_details.class);

 }

 }

}

EliteSeries, Release 9.5 33 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

The Stop method handles the workflow (database) cleanup and is called on regular exit and abnormal

termination.

Example:

 public void stop(WfStopRequest request) {

 MetaTableObjectContext context = request.getTableObjectContext();

 WmsReceivingHelper receivingHelper = WmsHelper.getReceivingHelper(context);

 receivingHelper.unlockReceipts(false);

 receivingHelper.clearReceiptReservation();

 WmsHelper.getCommandHelper(context).unlockCommands(false);

 }

Workflow Cache

The Workflow cache is used to:

• Contain workflow-specific transition data

• Can be used to communicate non-critical information between steps

• Structure/content is workflow-specific (one cache per workflow)

• Cannot be referenced after application failure

The Workflow cache class must extend:

 com.tecsys.wf.api.vo.WfBaseWorkflowCache

The workflow cache class has the following naming convention, where databaseName is the name of

the application database, and template is the generic name of the workflow:

 com.tecsys.databaseName.ext.api.wf.status.DatabaseNameTemplateCache

Workflow Steps

Workflow Steps are used to define a specific task to accomplish and must extend:

 com.tecsys.wf.api.ep.WfBaseStepExtension

EliteSeries, Release 9.5 34 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Additionnally, the step must provide a generic Enumeration class as a parameter to

WfBaseStepExtension. This enumeration defines the various exit statuses that may be returned from a

step. The enumeration have the following naming convention, where databaseName is the name of

the application database, and template is the generic name of the workflow and are implemented as

follow:

public enum DatabaseNameTemplateEnum implements WfStepStatus {

 START, REPEAT;

}

Workflow Steps have the following naming convention, where databaseName is the name of the

application database, template is the generic name of the workflow, and stepName is the a generic

name of the step.

com.tecsys.databaseName.ext.api.wf.ApiStep_template__stepName

Workflow steps have the following responsibilites:

• Build the User Interface component (prepare):

o identify the UI component as a Work Unit

o use restore point (if defined)

o define fields (custom pages), actions, messages, etc.

o the UI component is optional

• Handle the response (process)

o validate the work unit (custom pages)

o analyze the workflow action (define restore point if needed)

o perform any step-related database activity

o update the workflow cache

o return the appropriate status

EliteSeries, Release 9.5 35 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Work Units

View-Based Work Units

View-based work units require the step to identify the table and view table. The specification restricts

view selection (based on main table) and leverages table extension logic.

• Create Row: Used to create a new row in a table and uses the key entry and detail page of the

specified view.

• Modify Row: Used to modify an existing row in a table and uses the detail page of the specified view.

• Display Row: Used to view an existing row in a table and uses the detail page of the specified view.

Custom Work Units

Custom work units require the step to handle all UI elements.

Criteria Page: Custom page used to render search criteria (QBE). May reference the criteria usage

elements of a specified view. Additional step-defined fields can be added.

Parameter Page: Custom page made up of step-defined fields for display or input. Not customizable, no

supporting extension code, page level UI. All validation must be handled by the step.

Confirmation Page: Custom page for message display (error, warning or informational). Supports

multiple messages, standard action is “OK.”

Prompt Page: Custom page for prompt display. Standard actions are Yes and No.

Other Work Units

Empty Work Unit: Used for non-UI steps (processing only).

Nested Workflow Work Unit: Used to call another workflow. Step should be prefixed with “perform_”.

Control is returned the nested workflow is completed

Terminate Work Unit: Used to terminate the current workflow. Calls the workflow’s stop method to

perform cleanup

Workflow Actions

Standard Actions

Determined by iTopia (MetaStandardActionEnum):

• CLEAR, CONTINUE, CANCEL, FINISH, SKIP, SUBMIT

• PREVIOUS_RECORD, NEXT_RECORD, OK, YES, NO

o Hot Keys defined in CommonMethods.js

EliteSeries, Release 9.5 36 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Workflow (Custom) Actions

Determined by the workflow step:

• CUSTOM_KEY1, CUSTOM_KEY2 … CUSTOM_KEY9

• Hot Keys defined in CommonMethods.js

• The submit-type action completes work unit (i.e. executes business logic).

• The non-submit-type action aborts work unit and is used as a restore point to capture in-progress

entry (i.e. snapshot).

Workflow Metadata

Resource Definition

• Define as an individual resource (md_resource)

• URL

o {wf.engine_url}?resourceName={database}_{workflow}.wf

o Example: {wf.engine_url}?resourceName=wms_ibo_recv.wf

• Assign execute permission (md_permission)

• Add to resource groups as needed (md_resource_group)

Workflow Definition

• Define the workflow (md_workflow)

• the template name is derived from the ApiFlow class

o Example: ApiFlow_ibo_recv.java

• specify the resource name (as defined in md_resource)

• the workflow steps (md_workflow_step) are automatically loaded

o based on the defined ApiStep classes for the workflow

o only view-referencing steps are accessible

EliteSeries, Release 9.5 37 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

View Definition

Naming:

• Prefixed with database and table (as per current naming standard)

• Followed by “.” and workflow/step name

• Suffixed with “.wf”

• Example: wms_iv_f.move.wf

Capabilities:

• Disable lookup capability (is_quick_lookup = 0)

• Disable link capability (is_linkable = 0)

• Disable reference capability (is_referenceable = 0)

Focus on elements used by workflow, keep unused elements simple:

• Search Criteria – Criteria work unit

• Search Results – not supported

• Key (Details) – Create Row work unit

• Main Context (Details) – Create Row, Modify Row & Display Row work units

• Main (Details) – Create Row, Modify Row & Display Row work units

EliteSeries, Release 9.5 38 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

Launching a Parameter with Parameters

Resource-Based

Used when you need to start a workflow from the portal. External parameters could be defined as hard-

coded URL parameters in the URL of the resource to launch

• Example:

o ice_edit_transactional_child.wf

o {wf.engine_url}?resourceName=ice_edit_transactional_child.wf

&primaryKeyColumnOid_1=ice~sales_order_l~sales_order_l_id

&primaryKeyValue_1=8

&custom_123=test123

&custom_abc=testabc

There are some limitations because of the hard-coded values.

Column-Based

Used when you need to start a workflow from a record and has the following advantages:

• Launches in a modal window

o You do not need to leave the current record

o You do not need to use continue to get to a specific record

o You could use a different view to edit the same record (as far as you use the same application id)

• Edit any row of its identifying tree or any other row

• Can be defined as an expression column

• Can be rendered as a button or as a link

o Example:

tms~shipment~entry_detail_link

EliteSeries, Release 9.5 39 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

o The rendering of the column includes the URL with the parameters to provide when starting a

workflow

o JavaScript function to launch a workflow:

parent.CommonMethods_launchWorkflow(this)

o {value} is the default value of the expression column

Reading External Parameters

External parameters are only available in the first workflow step. It is recommended to use an “initialize”

workflow step to process the parameters and store them on the workflow cache.

Parameters are provided through a WfExternalParameters object stored in the first WfPrepareRequest.

Values are automatically read by iTopia from the URL

WfExternalParameters may contain:

• One primary key (MetaColumnValueList)

• Zero or many custom Parameters (Map<String, String>)

EliteSeries, Release 9.5 40 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.2 View Functionality and Extension Points

This section will describe the various Meta Engine operations and their extension points, indicating how

it interacts with the various extensions.

 There are nuanced differences in the way the Meta Engine interacts with each version of the

extension APIs. Since the older ones are deprecated, only the most recent version of each API is

covered here.

4.2.1 Search

 Use Case: The user may enter some QBE expression criteria, and clicks Search.

The Meta Engine uses the view customization to build an SQL query, applying the view’s criteria,

permanent criteria, and user domain restrictions. The results are displayed to the user in the results

section of the Search page.

In the above process, there are several extension points:

• preGetSearchResults (table extension)—invoked before the SQL query is performed.

• post GetSearchResults (table extension)—invoked after the SQL query is performed.

Uses of preGetSearchResults:

• Add additional criteria fields with QBE expressions to the query.

• Add error messages to criteria fields—the query will be aborted and the message(s) displayed to the

user.

• Interpret any extension column4 QBE expressions from the set of criteria fields. Such criteria is

interpreted programmatically, possibly resulting in additional criteria being added to the query, or

possibly used in post-query processing by the postGetSearchResults hook.

• Add additional columns to the result, to be fetched by the query. Such may be required by the

postGetSearchResults hook.

• Interpret all criteria field’s QBE expressions when the view is based on an extension table5.

 Any criteria fields or result columns added by the extension will not be visible to the user. Also,

criteria fields and result columns that belong to the view customization cannot be hidden.

Uses of postGetSearchResults:

• Populate extension column values in the set of result columns.

• Populate all columns when the view is based on an extension table.

• Add a message to the search results, which will be displayed to the user.

4 Extension columns are non-physical columns – they do not correspond to a column in the
database. Such a column cannot be referenced in the SQL query.
5 Extension tables are non-physical tables – the table does not correspond to a table in the
database, and thus all columns belonging to the table are non-physical. In such a case no
SQL query is performed.

EliteSeries, Release 9.5 41 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.2.2 Get Row

 Use Case: The user may select an individual row of the search results to display in the

Detail page.

The Meta Engine uses the view customization to build an SQL query, applying the view’s permanent

criteria and user domain restrictions. The fields are then contextualized—enabled or disabled as

determined by business logic. If the permanent criteria or user domain restrictions prevent the row from

being fetched, an error is displayed to the user; otherwise, the row’s Detail page is displayed to the user.

In the above process, there are several extension points:

• preGetRow (table extension)—invoked before the SQL query is performed.

• postGetRow (table extension)—invoked after the SQL query is performed.

• restrict (column extension)—invoked on a field by field basis.

4.2.3 Get Column Default Values

For physical columns and extension columns, default values are specified one of several ways:

• In metadata (md_column.default_value)

• In the postGetColumnDefaultValues table extension

Metadata

The column definition has a default value attribute (md_column.default_value). It is the most basic way

to specify a default value for the column. The value may be a simple value, or a processing instruction,

and in particular, a column reference processing instruction (see section 4.1.3 Processing Instructions).

When using a column reference, a processing instruction as a default value of a column of the main table

may refer to any of the business key parts, or values from the identifying ancestry. A processing

instruction as a default value of a column of a parent-maintained table may refer to values from the

identifying ancestry, including the main table (its parent).

Table Extension

You can programmatically provide a value. You must do so in the table extension in both the

postGetDefaultColumnValues and postGetKeyEntryDefaultColumnValues hook methods.

4.2.4 After Field

 Use Case: The user may change the values of a row while viewing the details of a row

(during create or modify).

As the user tabs out of the field (or otherwise leaves the field), the change is immediately registered with

the server. The Meta Engine calculates how other fields should be updated, disabled, or enabled, and

what error messages are required, and updates the UI with this information.

EliteSeries, Release 9.5 42 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

In the above process, there are several extension points:

• assistCurrent (column extension)—invoked on the current field

• the get column default values routine’s extension point (see section 4.2.3 Get Column Default

Values)—invoked as default values are needed.

• assist, validate6, restrict (column extensions)—invoked on various fields based on the field

dependencies defined in the extension.

4.2.5 Validate Row

The validate row routine does not correspond directly to an action that the user may take, rather, it is a

subroutine used during modify row and create row. It is responsible for validating the row data.

The validate row routine has several extension points:

• preValidateRow (table extension)—invoked at the beginning of the routine

• validate, restrict (column extensions)—invoked as each field is validated.

• postValidateRow (table extension)—invoked after the field validations, foreign key validations, and

candidate key validations.

4.2.6 Modify Row

 Use Case: Once the user has made changes to a row’s values, the user may save those

changes.

The Meta Engine may fill in additional information, and then validate the changes. If there are errors,

they are displayed to the user; otherwise, it may prompt the user for additional information (in the form of

a yes/no question). It then builds SQL update statements to apply those changes to the database (possibly

more than one statement depending on whether there are parent-maintained tables). The row is then

refetched using the get row routine and the result is displayed to the user. If the permanent criteria or user

domain restrictions prevent the row from being fetched, the transaction will be rolled back and an error

will be displayed to the user.

In the above process, there are several extension points:

• Assist, validate, restrict (column extensions)—invoked as needed based on changed values (if there

are any7) and their field dependencies.

• the validate row extension points (see section 4.2.5 Validate Row)

• preModifyRow (table extension)—invoked before the SQL updates are performed. This extension

may return a prompt which would abort the update and cause the user to be prompted immediately.

• postModifyRow (table extension)—invoked after the SQL updates are performed.

• the get row extension points (see section 4.2.2 Get Row).

6 The domain extension’s preValidate and postValidate methods are executed whenever a
field’s value is validated. For simplicity’s sake, the domain extension points will not be
explicitly mentioned in section 0
7 In most cases the field changes would have been considered and applied already due to the
After Field mechanism.

EliteSeries, Release 9.5 43 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.2.7 Create Row

 The create row process spans multiple pages with which the user interacts—firstly a Create page (i.e.

key entry subview), typically displaying a small subset of fields, and secondly the full row Detail

page.

 Use Case: The user clicks the Create button from the Search page or the row Detail page.

The Meta Engine prepares the default values for the Create page (i.e. key entry subview), and the fields

are then contextualized—enabled or disabled as determined by business logic. The Create page (i.e. key

entry subview) is then displayed to the user.

In the above process, there are several extension points:

• preGetKeyEntryDefaultColumnValues (table extension)—invoked prior to fetching the default values

• postGetKeyEntryDefaultColumnValues (table extension)—invoked after fetching the default values

• validate, restrict (column extensions)—invoked as needed to contextualize fields.

 Use Case: The user fills in values and clicks the Continue button.

The Meta Engine validates the key entry values. If there are errors, they are redisplayed to the user on the

Create page (i.e. key entry subview); otherwise, the complete set of Detail page fields is prepared, and the

row Detail page is displayed to the user.

In the above process, there are several extension points:

• validate, restrict (column extensions)—invoked as each field is validated.

• the get column default values routine’s extension point (see section 4.2.3 Get Column Default

Values)

• postPrepareRow (table extension)

• restrict (column extension)—invoked on a field by field basis.

 Use Case: The user fills in values and clicks the Save button.

The Meta Engine validates the changes. If there are errors, they are displayed to the user; otherwise, it

may prompt the user for additional information (in the form of a yes/no question). It then builds SQL

insert statements to create the new records (possibly more than one statement depending on whether there

are parent-maintained tables). The row is then refetched using the get row routine and the result is

displayed to the user. If the permanent criteria or user domain restrictions prevent the row from being

fetched, the transaction will be rolled back and an error will be displayed to the user.

EliteSeries, Release 9.5 44 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

In the above process, there are several extension points:

• Assist, validate, restrict (column extensions)—invoked as needed based on changed values (if there

are any8) and their field dependencies.

• the validate row extension points (see section 4.2.5 Validate Row)

• preAddRow (table extension)—invoked before the SQL inserts are performed. This extension may

return a prompt which would abort the update and cause the user to be prompted immediately.

• postAddRow (table extension)—invoked after the SQL inserts are performed.

• the get row extension points (see section 4.2.2 Get Row).

4.2.8 Delete Row

 Use Case: The user may click the Delete button while viewing the details of a row (there

are other ways to delete rows as well).

The Meta Engine will refetch the row using the get row routine. If the permanent criteria or user domain

restrictions prevent the row from being fetched, the transaction is rolled back and an error is displayed to

the user. If the table has identifying children (not parent-maintained), a cascading delete is invoked

recursively on child records. The current row’s referential integrity is verified, if it is still being

referenced, the transaction is rolled back and an error is returned to the user. Finally, an SQL delete

statement is executed for all parent-maintained child tables and the main table, eliminating the row from

the database.

In the above process, there are several extension points:

• the get row extension points (see section 4.2.2 Get Row).

• preDeleteRow (table extension)—invoked prior to the delete statements being executed (including the

cascading delete)

• postDeleteRow (table extension)—invoked after the cascading delete, referential integrity check, and

delete statements.

4.3 Actions

Views can include actions—special functionality that is associated with a given table. An action may act

on a set of rows, in which case it requires the user to select one or more rows from the search results, or

act on a single row, these types of actions are called row-based actions. An action may require no row

selection, in which case it is not row-based. The action may require further interaction with the user, in

which case it is a UI action, and otherwise a non-UI action.

The action may create or modify or delete records in the current table, or may affect data in other tables.

Action Extension

Action extensions build upon the basic table operations of create, modify, delete and search. They

aggregate a series of these basic operations and provide complex and powerful, aggregate operations.

Action extension implementations will be covered separately. See the javadocs on

MetaApiActionExtension and MetaParameterizedAction for more details.

8 In most cases the field changes would have been considered and applied already due to the
After Field mechanism.

EliteSeries, Release 9.5 45 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.3.1 QuickLoad

In the load action, usually it is like ApiAction_*load*.java, e.g.

ApiAction_gl_entry__load_from_recur.java, you can get the criteria value by method of loadRow or

loadBatch. For example:

public MetaLoadRowResults loadRow(MetaLoadRowParameters parameters) {

String value =

parameters.getCriteriaValue(DmsGlRecurringJournalTemplateHeader.ORG_CODE_OID);

……

}

public MetaLoadRowResults loadBatch(MetaLoadBatchParameters parameters) {

String value =

parameters.getCriteriaValue(DmsGlRecurringJournalTemplateHeader.ORG_CODE_OID);

}

You also have access to the primary key values of the selected rows in loadRow or loadBatch. For

example:

public MetaLoadRowResults loadRow(MetaLoadRowParameters parameters) {

 MetaRowActionDetail rowActionDetail = parameters.getRowToLoad();

 MetaColumnValueList pkValues = rowActionDetail.getPrimaryKeyValues();

……

}

You also have access to the extension column values of the selected rows in loadRow or loadBatch. For

example:

public MetaLoadRowResults loadRow(MetaLoadRowParameters parameters) {

 MetaRowActionDetail rowActionDetail = parameters.getRowToLoad();

 MetaColumnValueList extensionValues = rowActionDetail.getExtensionColumnValues();

 ……

}

Only the extension columns personalized in the search results or the detail page are returned (depending

from where the user loaded the rows).

EliteSeries, Release 9.5 46 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.3.2 MetaRowBasedUpdateFieldAction (New Action Type)

A new action type has been added allowing an application to configure an action to use Update Fields.

The new action can be configured to do the following :

▫ Specify all the columns to be used for the action

▫ Specify the function and default values for those columns

▫ Specify if the user can add additional columns

▫ Specify if the user can remove action configured columns

▫ Specify if the action prompt the user to change information

▪ Auto-submits if prompt is set to false

Examples :

▪ WebTable_sales_order_l

▫ New Action : MetaRowBasedUpdateFieldAction

▫ Ui Setup – Where actions is available

▪ ApiAction_sales_order_l__increment_discount and

ApiAction_sales_order_l__add_discount

▫ Action Setup – How update fields is configured

▪ MetaUpdateFieldOption.Builder

▫ To build the update fields information

4.3.2.1 Setup

Configure your action in WebTable_{table_name}

public MetaProcessRowsAction[] getProcessRowsActions()

 ……

 action = new MetaRowBasedUpdateFieldAction();

 action.setCode(INCREMENT_DISCOUNT_ACTION_CODE);

 action.setDescription(new Literal("increment_disc_10%"));

 action.setContextPage(MetaProcessRowsContextCode.ROW_AND_SEARCH_PAGE);

 action.configureListForMultipleRows();

 action.setWindowAttributes(windowAttr);

 actions.add(action);

 ……

}

EliteSeries, Release 9.5 47 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.3.2.2 Action Definition

Define your action in ApiAction_{table_name}_{action_code}. This overrides the typical permission

based methods, like getActionAuthorization and getRowAuthorization.

Define the way Update Fields will behave by overriding the getUpdateFieldOption method. A sample is

shown below :

In this example we build Update Fields to set the function of the Discount Amount column to Add

Percentage and set the value to 10. It also prompts the user so they can change it if they wish using the

enablePromptUser method.

public class ApiAction_sales_order_l__increment_discount extends

MetaRowBasedUpdateFieldActionExtension

@Override

 public MetaGetActionAuthorizationResults

getActionAuthorization(MetaGetActionAuthorizationParameters parameters) {

 ……

 }

@Override

 public MetaGetRowAuthorizationResults

getRowAuthorization(MetaGetRowAuthorizationParameters parameters) {

 ……

 }

 @Override

 public MetaRowBasedUpdateFieldResults

getUpateFieldOption(MetaRowBasedUpdateFieldParameters parameters) {

 MetaUpdateFieldOption.Builder builder = new MetaUpdateFieldOption.Builder();

 builder.addColumnValueWithFormula(

 IceSalesOrderLine.DISC_AMT_OID,

 "10",

 MetaFormulaHelperEnum.ADD_PERCENTAGE).enablePromptUser();

 return new MetaRowBasedUpdateFieldResults(builder.build());

 }

}

EliteSeries, Release 9.5 48 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.4 Optimizing Your Code

When writing extension code or otherwise using Table Objects, iTopia automatically applies

optimizations when it is safe to do so.

• Fields and maintained grids that are not part of the original row image are lazy-loaded.

• Database locks are cached for the duration of the transaction, so that multiple calls to

MetaTableObject.lock() result in only one select for update statement per transaction.

• The physical database components of application locking are skipped when the scope of the

application lock is known ahead of time to be limited to the current transaction.

o The extension logic is still executed to maintain the integrity of the business logic.

o However, the business table’s lock id column remains null, and no md_lock record is created.

There are additional optimizations that can be applied programmatically, and are described below.

4.4.1 Table Object Trusted Data Flag

When Table Objects are used to create or modify data, the assist and validation logic implemented in the

column extension is applied. This is for the most part very beneficial, as it ensures the completeness and

validity of the data being persisted to the database.

In very specialized cases, when the values being supplied to the table object are trustworthy, the trusted

data flag can be set on the table object, and the assist and validation logic will be skipped, providing a

performance improvement. The criteria for trustworthiness is the following:

• The data is complete—all values that need to be provided have been, and all business rules have been

manually satisfied by the client code setting the values.

• The data is valid—all values are valid according to both by iTopia standards (generic, metadata-based

validations) and by the business logic (column extension validate and restrict logic). In other words,

the data would have passed the validation logic error-free if the trusted data flag were disabled.

Note that the pre/postAddRow or the pre/postModifyRow extension methods will not be skipped.

This should be done on an as-needed basis, in cases where performance is critical, and the data meets the

criteria for trustworthiness. The flag can be set as follows:

 IceSalesOrder order = IceSalesOrder.newInstanceForBk(tableObjectContext, 0);

 order.set...; //set all fields as required to ensure trustworthiness

 order.getBase().setTrustedData(true);

 order.add();

 Using the trusted data flag introduces a maintenance concern, for when a given table’s column

extension logic is changed, all client code that uses the trusted data flag with that table must be

reevaluated for trustworthiness.

EliteSeries, Release 9.5 49 TECSYS Developer Guide - iTopia Framework

Meta Engine—View-Based Queries and Maintenances TE-CAK950 – May 2017

4.4.2 Table Object Search with Iterable Result Set

Table Object Searches will execute a query and return a Table Object Search Result with the entire result

set loaded into memory. In some cases, this is undesirable or even untenable.

If the business logic requires an unknown number of records from the result set, or must iterate through

an unknown number until certain conditions are met, and the result set is potentially large, it would be

very ineficient to load the entire result set into memory for processing.

For this reason, a Table Object Search provides a method to fetch an iterable result set—one whose

contents are not preloaded into memory, but iterated as needed by client code.

com.tecsys.meta.api.to.MetaTableObjectSearch

 public MetaIterableResultSet searchIterableResult();

4.4.3 Dedicated Resources for Queues

Queues can be performance-critical components. Dedicating resources to a queue allows for maximal

reuse of prepared statements, which improves the performance of that queue, decreasing the time required

to consume that queue’s message.

Queues that are scheduled to consume messages very often, and consume large quantities of messages,

are good candidates for dedicated resources.

In order to dedicate resources for a queue, the queue name must be added to the following list in the

Tecsys.properties file:

msg.dedicated_resources.queues=wms_task_completion,wms_replenishment_processing

 Queues shoud not be added to this list too liberally, as this can have a detrimental effect on

performance, as dedicated resources are used exclusively by the queue and are therefore

unavailable to the rest of the application.

EliteSeries, Release 9.5 50 TECSYS Developer Guide - iTopia Framework

Service Implementations TE-CAK950 – May 2017

5 Service Implementations

5.1 Connection Management

All code that accesses the database, runs in a service. This includes commands, all extensions prefixed

with “Api” or in an “api” package (such as com.tecsys.ice.api.*), and table objects, to name a few types of

classes. Each service has a connection provider, which is passed on to the code invoked by the service

(such as commands, extensions, and table objects) so that all work done within the service is done on a

single set of database connections.

Proper connection management is essential to data and transactional integrity. For this reason, it is

essential that all database connections required are fetched from the service’s connection provider, and

that the connection provider not be shared with other services.

Several responsibilities must be handled to ensure proper connection management. These responsibilities

are outlined in section 5.3 Service Housekeeping Duties. The simplest and most effective way to satisfy

these responsibilities is by implementing an EjbResourceManagedCommand.

Connection Management Standards
• A service implementation, and all code invoked within the scope of that service, must reference a

single instance of SqlConnectionProvider, and get all its connections from that same provider.

• Connections must not be passed to or from service methods, in any shape or form (i.e. table objects,

table object contexts, other contexts, and so on).

• Services must implement EjbResourceManagerSessionBean, and follow the established pattern for

invoking an EjbResourceManagedCommand or an EjbResourceManagedTransactionalCommand.

Pitfalls to Avoid

Services, and the code invoked within the scope of a service:

1. Must not share connections. They must not receive as a parameter any object that can contain a

connection. They must not return any object that can contain a connection. Connection providers,

command contexts, table objects, and table object contexts all contain references to connections;

therefore, they must not, directly or indirectly, be passed as a parameter to a service method, nor

returned from a service method.

2. Must not get connections from any source other than the service’s dedicated connection provider. If,

from your code, you can obtain a connection provider (from a context, for example), then you can

assume it is the service’s dedicated connection provider that has been passed on. Creating new

connections for example, would obviously undermine this principle.

Take great care in creating new contexts, to ensure reuse of the service’s dedicated connection provider.

This will ensure your code does not inadvertently create new connections.

EliteSeries, Release 9.5 51 TECSYS Developer Guide - iTopia Framework

Service Implementations TE-CAK950 – May 2017

5.2 Creating Services

The Business Layer contains the application business logic. Often, when implementing business logic, no

new services or service methods need be created, for the iTopia framework has many extension points in

the Business Layer and hence implementing an extension adds business logic to the Business Layer.

However, there are times when a service method is what’s required.

A few key concepts must be understood when implementing service methods. Here is an overview:

• Housekeeping Responsibilities: The service is responsible for several housekeeping duties, including

error logging, exception handling, and transaction management.

• The iTopia transaction management standards: a small set of standards that govern how transaction

management is performed within iTopia applications.

• StatelessServices: Instances of the service class should be stateless.

• The command pattern: this is an implementation style where the service method itself is very thin,

containing housekeeping logic but no business logic. All business logic is encapsulated in a

command, which the service invokes.

• The EJB resource managed-commands: these commands work with the framework to allow for a

standard implementation of all the housekeeping logic, by encapsulating it in a generic way. Like

with the command pattern, the command handles all the business logic, but the Business Layer has

very little to do except call the appropriate methods to handle the house keeping duties. There are

two types:

o EJB resource managed command: for read-only or query logic that should not execute within a

transaction.

o EJB resource managed transactional: for logic that performs database updates and therefore must

execute within a transaction

These key concepts will be explored in some detail below.

5.3 Service Housekeeping Duties

There are several responsibilities common to all EJB service methods, including:

• Connection pooling

• Connection initialization and release/recycling

• Exception handling and logging

Service methods that update the database have the following additional responsibilities:

• Failover handling/transaction recovery for Oracle RAC (aka try again logic)

• Basic transaction management, that is, commit and rollback logic

• Support for commit and rollback listeners

• Observing the rollback only flag

• Ensuring only one application database participates in the transaction

• Providing information to the connections for auditing

EliteSeries, Release 9.5 52 TECSYS Developer Guide - iTopia Framework

Service Implementations TE-CAK950 – May 2017

The handling of these responsibilities has been encapsulated in the framework. Using the EJB resource

managed command patterns described below will help ensure that your code fulfills these responsibilities,

and does so in a consistent, tested, and proven way.

Extension implementations need not be concerned with housekeeping duties as it is handled by the calling

framework code.

5.4 Transaction Management Standards

The following iTopia transaction management standards must be followed:

• Transactions must be managed in the Bean class of the service, with at most one transaction per

service method, and implement the Try Again algorithm for automatic failover.

• A transaction must not contain updates on more than one connection.

• All database updates (insert/update/delete) must be executed within a transaction

• Transactions should be managed via the SqlConnectionProvider, not the SqlConnection

Using the EJB resource managed command patterns described below will help ensure that code complies

with these standards.

5.5 Command Pattern

A command is a single-purposed business logic routine. It has setter methods by which its parameters are

supplied, an execute method that exercises the business logic, and (optionally) a getter method by which

its result is obtained.

In the example below, ICE is the application database, and IceFetchSalesOrderCommand is a command

that takes an IceSalesOrderId and returns an IceSalesOrder.

 IceFetchSalesOrderCommand cmd = new IceFetchSalesOrderCommand();

 IceSalesOrderId id = new IceSalesOrderId("2946");

 cmd.setSalesOrderId(id);

 cmd.execute();

 IceSalesOrder order = cmd.getSalesOrder();

5.6 EJB Resource Managed Command—for Read Only Operations

This pattern should be followed by all service methods that do not update the database, and need not

execute in a transaction.

1. The service must extend EjbResourceManagerSessionBean

com.tecsys.base.api.EJbResourceManagerSessionBean

EliteSeries, Release 9.5 53 TECSYS Developer Guide - iTopia Framework

Service Implementations TE-CAK950 – May 2017

2. The business logic must be contained in a command that implements the

EjbResourceManagedCommand interface:

com.tecsys.base.api.cmd.EJbResourceManagedCommand

3. The command should be passed to the super class’ executeManagedCommand() method to be

executed. The caller should not be concerned with error logging, exception handling, or connection

cleanup. The only thing required is to catch Exception and rethrow any specific exceptions the

service method declares, all other exceptions can be rethrown wrapped in a TRuntimeException.

Once implemented, the method will look something like the following. In this example, ICE is the

application database, and fetchSalesOrder is a service method that takes in an IceSalesOrderId and returns

an IceSalesOrder. An instance of the IceFetchSalesOrderCommand is passed to the

executeManagedCommand() method, which takes care of executing the command, logging errors, and

recycling connections.

 public IceSalesOrder fetchSalesOrder(

 MetaApplicationScope applicationScope,

 IceSalesOrderId id) throws UmsInvalidAccessTokenException {

 IceSalesOrder order = null;

 IceCommandContext aCommandContext = getCommandContext(

 applicationScope);

 IceFetchSalesOrderCommand cmd = aCommandContext.getCommand(

 IceFetchSalesOrderCommand.class);

 cmd.setContext(aCommandContext);

 cmd.setSalesOrderId(id);

 try {

 executeManagedCommand(cmd);

 }

 catch (Exception e) {

 if (e instanceof UmsInvalidAccessTokenException) {

 throw (UmsInvalidAccessTokenException) e;

 }

 else if (e instanceof TRuntimeException) {

 throw (TRuntimeException) e;

 }

 throw new TRuntimeException(e);

 }

 order = cmd.getSalesOrder();

 return order;

 }

EliteSeries, Release 9.5 54 TECSYS Developer Guide - iTopia Framework

Service Implementations TE-CAK950 – May 2017

5.7 EJB Resource Managed Transactional Command—for Update
Operations

This pattern should be followed by all service methods that update the database.

1. The service must extend EjbResourceManagerSessionBean

com.tecsys.base.api.EJbResourceManagerSessionBean

2. The business logic must be contained in a command that implements the

EjbResourceManagedTransactionalCommand interface:

com.tecsys.base.api.cmd.EJbResourceManagedTransactionalCommand

3. The service method must take in an instance of SqlApplicationUserSessionDescription as a

parameter; it will be needed by the framework.

com.tecsys.base.sql.SqlApplicationUserSessionDescription

The most common implementation is the MetaApplicationScope, which is readily available

throughout most of the code.

com.tecsys.meta.api.cmd.MetaApplicationScope

4. The business logic must be contained in a command that implements the

EjbResourceManagedTransactionalCommand interface. Implementing this interface means two

things:

a. It must be safe to execute multiple times, because the framework will execute the command, and

if a particular kind of database exception is thrown, the transaction will be rolled back, and the

command will be executed again, up to a maximum of two times9. Pay special attention to the

implementation of the reset method—it will be called before every execution of the command,

giving the command an opportunity to reset any state variables.

b. It must implement the getApplicationUserSessionDescription method, which returns an instance

of SqlApplicationUserSessionDescription—this will be used by the framework to register certain

information with the transaction. The implementation can simply return the

MetaApplicationScope parameter that was provided to the service method (see step 3).

9 This allows for seamless failover between Oracle RAC servers

EliteSeries, Release 9.5 55 TECSYS Developer Guide - iTopia Framework

Service Implementations TE-CAK950 – May 2017

5. The command should be passed to the super class’ executeManagedTransactionalCommand() method

to be executed. The caller should not be concerned with error logging, exception handling,

connection cleanup, transaction management, failover, and auditing. The only thing required is to

catch Exception and rethrow any specific exceptions the service method declares, all other exceptions

can be rethrown wrapped in a TRuntimeException.

Once implemented, the method will look something like the following. In this example, ICE is the

application database, and saveSalesOrder is a servicemethod that takes in an IceSalesOrder and persists it

to the database.

 public void saveSalesOrder(

 MetaApplicationScope applicationScope,

 IceSalesOrder order) throws UmsInvalidAccessTokenException {

 IceCommandContext aCommandContext = getCommandContext(

 applicationScope);

 IceSaveSalesOrderCommand cmd = aCommandContext.getCommand(

 IceSaveSalesOrderCommand.class);

 cmd.setContext(aCommandContext);

 cmd.setSalesOrder(order);

 try {

 executeManagedTransactionalCommand(cmd);

 }

 catch (Exception e) {

 if (e instanceof UmsInvalidAccessTokenException) {

 throw (UmsInvalidAccessTokenException) e;

 }

 else if (e instanceof TRuntimeException) {

 throw (TRuntimeException) e;

 }

 throw new TRuntimeException(e);

 }

 }

EliteSeries, Release 9.5 56 TECSYS Developer Guide - iTopia Framework

Transaction Management TE-CAK950 – May 2017

6 Transaction Management

Most of the transaction management material is covered under the Service Implementations chapter,

because transaction management is handled by the service. This chapter will deal with a few loose ends.

6.1 Isolation Level

iTopia uses the read committed isolation level, or some vendor-specific flavor of it. Although the

implementations and names vary by vendor, the end result in each case is the following:

• For a given transaction, only data committed by other transactions is visible (committed read). No

dirty reads.

• A basic read or query10 is not be blocked by any uncommitted work.

Oracle

The default isolation level (read committed) is used. Read operations are not blocked by work in progress

in other transactions.

Microsoft Sql Server

Statement-level snapshot isolation is used (also known as READ_COMMITTED).

6.2 Locking

The ability to apply a lock to a database row is often vital to ensuring transactional integrity. There are

many possible locking strategies; this section will describe the locking mechanisms provided by iTopia.

The iTopia framework for the most part takes an optimistic approach to locking: when the user queries a

record in the Web UI, and then selects that record, the row is not reserved for that user. Only when the

user saves or submits changes to the record will the record be locked with a database lock and the user’s

changes persisted. The optimistic policy is important for performance and usability—if locks were

obtained every time a user selected a record, database contention would increase greatly.

Pessimistic locking, in the form of an application lock, can be applied on the transaction entry point

record. An application lock is obtained in the Web UI as soon as a specific entry point record is created

or selected for editing. The entry point must have an application lock before any of its identifying tree

can be changed.

Although the iTopia framework will obtain locks as needed for records being updating via the Web UI,

both database and application locks will also be obtained as needed on the records being updated behind

the scenes by business logic (extension code).

10 A basic read is a select statement without any locking hints or directives. A select for
update statement does not qualify as a basic read operation.

EliteSeries, Release 9.5 57 TECSYS Developer Guide - iTopia Framework

Transaction Management TE-CAK950 – May 2017

6.2.1 Database Locks

Database locks are obtained within a transaction, and released when the transaction is committed or rolled

back. They are obtained with a select statement, and the actual lock is managed by the database.

• Oracle: SELECT … FOR UPDATE NO WAIT

• Sql Server: SELECT … WITH UPDLOCK

• Informix: SELECT FOR UPDATE

The iTopia framework instructs the database not to wait for the lock, so that it can control the length of

time to wait and the number of times to reattempt the lock. The following database-specific

Tecsys.properties entries control this (interval in milliseconds):

db.connection.databaseName.lock_retry.attempts=200

db.connection. databaseName.lock_retry.interval=250

The iTopia meta engine modify-row routine will apply a database lock at the beginning of the operation,

before it fetches the record’s latest database values, applies business logic, and updates the database

record.

A database lock can also be obtained on a Table Object by invoking the lock method.

 IceProduct product2 = IceProduct.findByPk(tableObjectContext, productCode);

 product2.lock();

Note that the lock method, if invoked on a transactional table, will also obtain an application lock if not

previously obtained.

 Best Practice regarding locking: business logic should apply a database lock prior to setting any

values on a table object.

6.2.2 Application Locks

Application locks are managed by the iTopia framework, not the database engine. As such, their scope

can be more long-lived than a database lock, and can be obtained pessimistically, as soon as the user

selects a record for editing. They will also be obtained optimistically, when a modification is submitted

using a Table Object, if none was previously obtained.

Application locking is supported only on entry point tables. The table must have a lock id column which

will have a logical relationship to the md_lock table in the Meta database.

By locking the entry point, the entire identifying tree is reserved for the locking process to update, no

other process can edit any part of it.

EliteSeries, Release 9.5 58 TECSYS Developer Guide - iTopia Framework

Transaction Management TE-CAK950 – May 2017

6.3 Commit and Rollback Listeners

The iTopia framework supports listeners for the commit and rollback events. The need for such a

mechanism is hard to describe because by nature they deal with exceptional cases. Here are some uses in

the current application:

• After the transaction is committed, print some documents.

• After the transaction is committed, clear some work tables.

• After the transaction is committed, delete the associated global transaction log.

• After the transaction is rolled back, close the associated global transaction log.

• After the transaction is committed, update some in-memory structure, such as invalidating a cache or

starting a thread.

Commit and rollback listeners should be scarce and used in very particular and exceptional cases. They

should not be used as a solution to a common problem.

Listeners must implement one (or both) of these interfaces:

com.tecsys.base.sql.SqlConnectionProviderCommitListener

 public void preCommit();

 public void postCommit();

com.tecsys.base.sql.SqlConnectionProviderRollbackListener

 public void preRollback();

 public void postRollback();

Also, for the listener to take effect, it must be registered with the SqlConnectionProvider

com.tecsys.base.sql.SqlConnectionProvider

 public void addCommitListener(

 SqlConnectionProviderCommitListener listener);

 public void addRollbackListener(

 SqlConnectionProviderRollbackListener listener);

Note that once a listener is registered, it will only be invoked if its event happens—the rollback listener

will not be invoked is the transaction ends in a commit, and vice versa. The lifespan of a listener is a

single transaction—once the transaction is completed, all registered listeners are removed.

EliteSeries, Release 9.5 59 TECSYS Developer Guide - iTopia Framework

Transaction Management TE-CAK950 – May 2017

Great care must be taken when implementing a commit or rollback listener. The listener implementation

can hold a reference to the information it requires to complete its task; however, the memory footprint

should be very small, and it must not reference any table objects, connection providers, or connections.

The type of information typically found in a listener implementation is the following:

• The Meta application scope (com.tecsys.meta.api.cmd.MetaApplicationScope), which contains the

access token and the application ID.

• A record’s primary key.

To complete a task, it can invoke a separate service, which will execute logic in its own transaction.

Given that a listener cannot add to the current transaction, and that any updates required are done by a

distinct service, its work will not cause an exception or rollback in the current transaction, and the call to

the service will succeed or fail independently of the current transaction. If the listener logic should not

execute independently, then do not use a commit/rollback listener.

6.4 Updating a Secondary Database

As previously mentioned, only one application schema may participate in a transaction. What if one

application integrates with another, and it needs to update that other application’s schema? Most likely,

the developer would want updates to both schemas to be part of the same transaction to ensure

transactional integrity.

The secondary schema, if it belongs to the same database server, can be updated via the first schema’s

connection, with an SQL of the following form:

update schema.table set column = ‘value’

The syntax of such SQL depends on the database vendor in question.

A second strategy would be to use a web service call and log all events in a global transaction log which

can then facilitate recovery in the case of a failure (see section 7 Global Transaction).

EliteSeries, Release 9.5 60 TECSYS Developer Guide - iTopia Framework

Global Transaction Logs TE-CAK950 – May 2017

7 Global Transaction Logs

A global transaction is a transaction that includes updates to resources that are external to the system and

scope of the typical database transaction management. Some types of external resources that could be

involved in a global transaction are:

• A file from the file system

• A web service

• A second database server

The global transaction log is a development feature of iTopia that can be used to capture information

regarding updates to external resources, which can then be used in the case of a failure to understand the

state of the transaction and recover.

Consider the following scenario: the ICE application has an order entry program, which communicates

with a third-party warehouse management system using web services to fulfill its orders. The global

transaction looks like this:

• Begin the transaction

• Update the ice database with the order information

• If there are no errors, make a web service call sending the item and quantity information to the wms

system

• If the web service reports an error—flag the transaction to rollback

• If there are errors or the transaction is flagged to rollback, then rollback and return errors; otherwise

commit.

This will behave well when the system is healthy, but will yield incorrect or unpredictable results in the

following situations:

• The web service never responds (times out)

• An unexpected error occurs after the web service call completes, but before the commit completes

(application server is out of memory, database goes down, network issues interrupt communication

with the database, and so on.)

The global transaction log can be used to keep track of updates to external resources, so that when an

unexpected failure occurs, recovery is possible. Ideally, the application uses the global transaction log to

automatically recover from a failure, but even in the absence of automated recovery, the log can make

recovery possible by human/manual intervention.

The global transaction log is stored in the md_gtrans_log table and its identifying child tables.

EliteSeries, Release 9.5 61 TECSYS Developer Guide - iTopia Framework

Global Transaction Logs TE-CAK950 – May 2017

7.1 Reference ID

Every global transaction log corresponds to a business entity. In the example above, a log is required to

indicate the state of a particular sales order’s web services update to an external system. That means

every log needs a unique identifier, called a global transaction log reference ID, or reference ID for short.

com.tecsys.ums.api.vo.UmsGlobalTransactionLogReferenceId

A reference ID has two components—a type and a reference. The type uniquely identifies the client (or

program), and the reference uniquely identifies the business data/entity. Therefore, the example above

could use the following as a reference ID:

• Type: a name identifying the client, for example, ice_sales_order_maintenance

• Reference: the sales order’s primary key, for example, 15603

These two components together uniquely identify the log. Notice that both components are necessary,

since the ice_sales_order_maintenance client could conceivably have logs for several sales orders, a

single sales order could have logs from various clients.

The global transaction client types are stored in the md_gtrans_type table.

7.2 Helper API

The global transaction log is updated via the UmsGlobalTransactionLogService:

com.tecsys.ums.api.UmsGlobalTransactionLogService

A helper class has been designed to front the UmsGlobalTransactionLogService, to provide a more

convenient, friendlier API for reading and updating a global transaction log:

com.tecsys.ums.api.util.UmsGlobalTransactionLogHelper

The helper provides the following:

• Convenience methods for handling the log.

• All log updates are immediately auto-committed, since each update is performed via a servicecall

which executes in its own transaction.

• The log is automatically deleted when the client application’s transaction is committed, unless the

helper’s keep log on commit flag has been set.

• The log is automatically closed when the client application’s transaction is rolled back.

• Debug log information when the UmsGlobalTransactionLogHelper debug category is enabled.

Sample code showcasing the use of the global transaction log can be found in the following test class:

com.tecsys.ums.api.util.UmsGlobalTransactionLogHelperTest

EliteSeries, Release 9.5 62 TECSYS Developer Guide - iTopia Framework

Appendix—Extension API Listing TE-CAK950 – May 2017

8 Appendix—Extension API Listing

The following is a breakdown of Business Layer extension APIs by package:

com.tecsys.base.sql

• SqlConnectionProviderCommitListener

• SqlConnectionProviderRollbackListener

com.tecsys.ums.api.ep

• UmsApiSessionExtension

• UmsApplicationCleanupExtension

com.tecsys.meta.api.ep

• MetaApiDomainExtension

• MetaApiActionExtension

• MetaApiRuleExtension

• MetaNewApiTableExtension

• MetaOverrideAddRowTableExtension

• MetaOverrideDeleteRowTableExtension

• MetaOverrideModifyRowTableExtension

• MetaPreStagingTableExtension

• MetaStageOutTableExtension

• MetaStagingTableExtension

com.tecsys.meta.api.ep_r2

• MetaApiColumnExtensionR2

com.tecsys.wf.api.ep

• WfStepExtension

• WfWorkflowExtension

com.tecsys.wf.api.ep

• MsgApiQueueExtension

EliteSeries, Release 9.5 63 TECSYS Developer Guide - iTopia Framework

Index TE-CAK950 – May 2017

9 Index

A

Action extensions, 44

Application Locks, 57

Assist logic, 30

auditing, 51, 55

Authorization, 26

C

Cardinality, 22

cascading delete, 44

cleanup instruction, 12

Cleanup instructions, 18

Column extensions, 30, 31

command, 52

commit, 58

committed, 61

connection management, 50

Connection Management Standards, 50

Connection pooling, 51

connection provider, 50

Criteria fields, 28

D

Database Locks, 57

dedicated connection provider, 50

Dedicated Resources, 49

Detail fields, 28

detail page, 28

Domain extensions, 29

E

extension points, 7, 14, 40

Extensions, 7

F

Failover, 51, 54, 55

G

global transaction, 60

global transaction log, 58, 60

grid, 23

H

Housekeeping, 50, 51, 52

I

Identifying Relationship, 22

Identifying Root Table, 22

Identifying Tree, 22

inter-column dependencies, 30

Iterable Result Set, 49

K

key entry page, 28, 43

L

Licensing, 19

Listeners, 58

lock id, 25

Locking, 56

M

meta engine, 20

metadata, 7, 27

O

optimization, 48

Optional Relationship, 21

P

Parent-Maintained Table, 23

parent-maintained tables, 27, 29

Permanent Criteria, 27, 40, 41

Permissions, 19

prompt, 42, 43

Q

Queues, 49

R

recycling, 53

EliteSeries, Release 9.5 64 TECSYS Developer Guide - iTopia Framework

Index TE-CAK950 – May 2017

referential integrity, 44

relationship, 21

Result columns, 28

role, 19

rollback, 58

rollback only, 51

rolled back, 61

root table, 22

row detail page, 41, 43

Row level security, 19

S

schema, 59

search results page, 28, 40

session application cleanup extension, 12

session extension, 12

SqlConnectionProvider, 50

T

Table extensions, 29

transaction, 59

Transaction Entry Point, 25

Transaction Hierarchy, 25

transaction management, 51

transactional integrity, 59

Transactional View, 25

Transactions, 52

Trusted Data, 48

U

user domain restrictions, 19, 40, 41

V

view customization, 27

Views, 27

	1 Introduction
	1.1 About this Guide
	1.2 Intended Audience
	1.3 Conventions
	1.4 Getting Customer Support

	2 Architecture Overview
	2.1 iTopia Clients
	2.1.1 WUI Client

	2.2 Meta Database

	3 User Management System
	3.1 Authentication
	3.2 Extension Type Overview
	3.3 Sessions
	3.3.1 Session Life Cycle—Timeout and Keep Alive

	3.3.2 Session Life Cycle – Keep Me Logged In
	3.3.3 Session Life Cycle – Termination of a Session
	3.4 Session Applications
	3.4.1 Session Application Locks
	3.4.2 Session Application Life Cycle—Timeout and Keep Alive
	3.4.3 Session Application Cleanup

	3.5 Resource Authorization
	3.6 Custom Resource Extension & Framework

	4 Meta Engine—View-Based Queries and Maintenances
	4.1 Preliminaries
	4.1.1 Data Type Formats
	4.1.2 Relationships and Related Concepts
	4.1.3 Processing Instructions
	4.1.4 Transactional Views and Related Concepts
	4.1.5 View Authorization
	4.1.6 View Component Overview
	4.1.7 Extension Type Overview

	4.2 View Functionality and Extension Points
	4.2.1 Search
	4.2.2 Get Row
	4.2.3 Get Column Default Values
	4.2.4 After Field
	4.2.5 Validate Row
	4.2.6 Modify Row
	4.2.7 Create Row
	4.2.8 Delete Row

	4.3 Actions
	4.3.1 QuickLoad
	4.3.2 MetaRowBasedUpdateFieldAction (New Action Type)
	4.3.2.1 Setup
	4.3.2.2 Action Definition

	4.4 Optimizing Your Code
	4.4.1 Table Object Trusted Data Flag
	4.4.2 Table Object Search with Iterable Result Set
	4.4.3 Dedicated Resources for Queues

	5 Service Implementations
	5.1 Connection Management
	5.2 Creating Services
	5.3 Service Housekeeping Duties
	5.4 Transaction Management Standards
	5.5 Command Pattern
	5.6 EJB Resource Managed Command—for Read Only Operations
	5.7 EJB Resource Managed Transactional Command—for Update Operations

	6 Transaction Management
	6.1 Isolation Level
	6.2 Locking
	6.2.1 Database Locks
	6.2.2 Application Locks

	6.3 Commit and Rollback Listeners
	6.4 Updating a Secondary Database

	7 Global Transaction Logs
	7.1 Reference ID
	7.2 Helper API

	8 Appendix—Extension API Listing
	9 Index

