

Java Programming Standards
&

Reference Guide

Version 3.2

Office of Information & Technology
Department of Veterans Affairs

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

i

REVISION HISTORY

DATE VER. DESCRIPTION AUTHOR CONTRIBUTORS

10-26-15 3.2 Added Logging
Standards , updated
checkstyle installation
instructions and package
name rules.

Sid Everhart
Vic Pezzolla

JSC

11-14-14 3.1 Added ground rules for
enforcement

Vic Pezzolla JSC

9-26-14 3.0 Document is continually
being edited for
technical accuracy and
compliance to JSC
standards.

Raymond
Steele OI&T
/ PD

JSC and several
noteworthy
Subject Matter
Experts (SMEs)

12-1-09 2.0 Document Updated Michael
Huneycutt Sr

4-7-05 1.2 Document Updated Sachin
Sharma

Mai L Vo
Lyn D Teague
Rajesh Somannair
Katherine Stark
Niharika Goyal
Ron Ruzbacki

3-4-05 1.0 Document Created Sachin
Sharma

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

ii

ABSTRACT
The VA Java Development Community has been establishing standards,
capturing industry best practices, and applying the insight of experienced (and
seasoned) VA developers to develop this “Java Programming Standards &
Reference Guide”.
The Java Standards Committee (JSC) team is encouraging the use of
CheckStyle (in the Eclipse IDE environment) to quickly scan Java code, to locate
Java programming standard errors, find inconsistencies, and generally help build
program conformance.
The benefits of writing quality Java code infused with consistent coding and
documentation standards is critical to the efforts of the Department of Veterans
Affairs (VA).
This document stands for the quality, readability, consistency and maintainability
of code development and it applies to all VA Java programmers (including
contractors). Adherence to these standards and rules will become a
measurement of the quality of their work.

NOTE:	 Good	 Java	 programming	 practices	 empower	 new	
personnel	 to	 quickly	 grasp	 the	 intention	 and	 purpose	
of	 the	 application,	 understand	 the	 style	 and	 theme	
being	 used,	 and	 construct	 enhancements	 that	 blend	 in	
well.	

Please read and follow the standards, conventions, suggestions, and general
concerns outlined in this document. This document will continue to evolve and is
meant to be a helpful programmer’s tool.

• All aspects of mature software development are implemented when new
code can be written and Quality-Inspected quickly and thoroughly.

• Most software is not maintained indefinitely by the original software
developer. It is maintained by a multitude of contributing software
engineers that in time will add patches, tighten the code, add functionality,
and keep the applications current to the latest standards.

• Feedback in the form of corrections or suggestions for improvement of this
document is encouraged in order to remove useless parts and add new
parts as the Java language itself evolves.

• The VA JSC is comprised of volunteers that champion these standards to
attain the industry proven benefits for VA.

• The developed software must comply with the appropriate standards and
conventions established for the programming language found in the
Technical Reference Model/Standards Profile (TRMSP).

• The VA requires a 508 compliance certificate along with other
documentation to certify software compliance prior to acceptance.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

iii

• Comments may be sent to the VA OI&T Java Standards Committee
<VAOITJavaStandardsCommittee@va.gov>

"Any	 fool	 can	 write	 code	 that	 a	 computer	 can	
understand.	

Good	 programmers	 write	 code	 that	 humans	 can	
understand."	 By	 Mr.	 Martin	 Fowler,	 On	 Refactoring:	
Improving	 the	 Design	 of	 Existing	 Code	

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

iv

TABLE OF CONTENTS
1	 OVERVIEW ... 1	

1.1	 Introduction .. 1	
1.2	 Standards and Conventions Derivation ... 2	
1.3	 The Benefits of Using a Consistent Style .. 3	
1.4	 Intended Audience .. 3	
1.5	 Terminologies Used in This Guide .. 4	
1.6	 Technology .. 6	
1.7	 Enforcement .. 6	
1.8	 Acknowledgements ... 7	
1.9	 Source File Organization ... 8	
1.10	 Source File Naming.. 8	
1.11	 Package Declaration .. 8	

2	 NAMING CONVENTIONS ... 9	
2.1	 Package Names .. 9	
2.2	 Type Names .. 9	
2.3	 Member Names ... 10	
2.4	 Method Names .. 11	
2.5	 Constant Names .. 12	
2.6	 Parameter Names ... 13	
2.7	 Static Variable Names ... 13	
2.8	 Specific Naming Conventions ... 14	

3	 DOCUMENTATION ... 16	
3.1	 Beginning Comments .. 17	
3.2	 General Comment Formats ... 17	

3.2.1	 Block Comments ... 17	
3.2.2	 Single-Line Comments .. 18	
3.2.3	 Trailing Comments .. 19	
3.2.4	 End-Of-Line Comments ... 19	

3.3	 Comments with TODO or FIXME .. 20	
3.4	 Javadoc Comments ... 20	
3.5	 Type Javadoc .. 22	
3.6	 Method Javadoc .. 22	

Unknown
Field Code Changed ... [1]

Unknown
Field Code Changed ... [2]

Unknown
Field Code Changed ... [3]

Unknown
Field Code Changed ... [4]

Unknown
Field Code Changed ... [5]

Unknown
Field Code Changed ... [6]

Unknown
Field Code Changed ... [7]

Unknown
Field Code Changed ... [8]

Unknown
Field Code Changed ... [9]

Unknown
Field Code Changed ... [10]

Unknown
Field Code Changed ... [11]

Unknown
Field Code Changed ... [12]

Unknown
Field Code Changed ... [13]

Unknown
Field Code Changed ... [14]

Unknown
Field Code Changed ... [15]

Unknown
Field Code Changed ... [16]

Unknown
Field Code Changed ... [17]

Unknown
Field Code Changed ... [18]

Unknown
Field Code Changed ... [19]

Unknown
Field Code Changed ... [20]

Unknown
Field Code Changed ... [21]

Unknown
Field Code Changed ... [22]

Unknown
Field Code Changed ... [23]

Unknown
Field Code Changed ... [24]

Unknown
Field Code Changed ... [25]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 19

Unknown
Field Code Changed ... [26]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 20

Unknown
Field Code Changed ... [27]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 20

Unknown
Field Code Changed ... [28]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 21

Unknown
Field Code Changed ... [29]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [30]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [31]

Department of Vete…, 3/29/2016 8:26 AM

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

v

3.7	 Variable Javadoc ... 24	
3.8	 Style Javadoc .. 24	

4	 STYLE ... 26	
4.1	 Coding Size Limits ... 26	
4.2	 Maximum Line Length ... 26	
4.3	 Maximum File Length .. 26	
4.4	 Maximum Anonymous Inner Class Length .. 27	
4.5	 Maximum Method Length .. 27	
4.6	 Maximum Number of Parameters ... 27	
4.7	 Whitespace .. 28	
4.8	 Operator Wrap ... 28	
4.9	 Tab Character ... 28	
4.10	 Modifier Order .. 29	

5	 DESIGN ... 30	
5.1	 Simple Statements .. 30	
5.2	 Compound Statements .. 30	
5.3	 Return Statements .. 30	
5.4	 if, if-else, if else-if else Statements .. 31	
5.5	 For Statements .. 31	
5.6	 While Statements .. 32	
5.7	 Do-while Statements ... 32	
5.8	 Switch Statements ... 33	
5.9	 Try-catch Statements .. 34	

6	 CLASS DESIGN .. 35	
6.1	 Design for Extension ... 35	
6.2	 Final classes .. 35	
6.3	 Utility classes ... 35	
6.4	 Coding Metrics - Number of Conditions .. 36	
6.5	 Coding Metrics - A Sample Violation: .. 36	
6.6	 Class Fan Out Complexity ... 36	
6.7	 Cyclomatic Complexity .. 37	
6.8	 Duplicate Code .. 37	

7	 POTENTIAL CODING ISSUES ... 38	

Unknown
Field Code Changed ... [32]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 25

Unknown
Field Code Changed ... [33]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 25

Unknown
Field Code Changed ... [34]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 27

Unknown
Field Code Changed ... [35]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 27

Unknown
Field Code Changed ... [36]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 27

Unknown
Field Code Changed ... [37]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 27

Unknown
Field Code Changed ... [38]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 28

Unknown
Field Code Changed ... [39]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 28

Unknown
Field Code Changed ... [40]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 28

Unknown
Field Code Changed ... [41]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 29

Unknown
Field Code Changed ... [42]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 29

Unknown
Field Code Changed ... [43]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 29

Unknown
Field Code Changed ... [44]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 30

Unknown
Field Code Changed ... [45]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 31

Unknown
Field Code Changed ... [46]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 31

Unknown
Field Code Changed ... [47]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 31

Unknown
Field Code Changed ... [48]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [49]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [50]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [51]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [52]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [53]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [54]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [55]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [56]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [57]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [58]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [59]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [60]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [61]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [62]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [63]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [64]

Department of Vete…, 3/29/2016 8:26 AM

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

vi

7.1	 Empty Statements/Empty Blocks .. 38	
7.2	 Equals and HashCode .. 39	
7.3	 Inner Assignment .. 41	
Magic Number ... 42	
7.4	 Boolean expressions and returns .. 43	
7.5	 Nested Blocks ... 43	

8	 IMPORTS .. 45	
8.1	 Wildcard imports .. 45	
8.2	 Illegal imports .. 45	
8.3	 Unused imports ... 46	

9	 CHECKSTYLE INSTALLATION .. 47	
10	 JAVA PROGRAMMING RULES ... 49	
11	 NAMING CONVENTION REFERENCE ... 57	
12	 JAVA SECTION 508 COMPLIANCE .. 59	
13	 BEST PRACTICES ... 60	

13.1	 Logging Standards ... 60	
14	 REFERENCES ... 61	

14.1	 Web Resources .. 61	
15	 SO WHAT AM I? ... 62	

FIGURES & TABLES
Table 1 - Acronyms and Definitions ... 4	

Figure 1 - Eclipse Screen Shot .. 47	

Unknown
Field Code Changed ... [65]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 39

Unknown
Field Code Changed ... [66]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 40

Unknown
Field Code Changed ... [67]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 42

Unknown
Field Code Changed ... [68]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 43

Unknown
Field Code Changed ... [69]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 44

Unknown
Field Code Changed ... [70]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 44

Unknown
Field Code Changed ... [71]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 46

Unknown
Field Code Changed ... [72]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 46

Unknown
Field Code Changed ... [73]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 46

Unknown
Field Code Changed ... [74]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 47

Unknown
Field Code Changed ... [75]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 48

Unknown
Field Code Changed ... [76]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 50

Unknown
Field Code Changed ... [77]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 58

Unknown
Field Code Changed ... [78]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 60

Unknown
Field Code Changed ... [79]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 61

Unknown
Field Code Changed ... [80]

Department of Vete…, 3/29/2016 8:26 AM
Deleted: 61

Unknown
Field Code Changed ... [81]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [82]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [83]

Department of Vete…, 3/29/2016 8:26 AM

Unknown
Field Code Changed ... [84]

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 1 of 71

1 OVERVIEW
1.1 Introduction
This Java Programming Standards and Reference Guide has been compiled to
provide current and future Java programmers with a set of coding conventions
and standards to be followed when developing applications using the Java
Programming Language.
This document reflects best practices for Java programming standards and
coding conventions to follow, that by themselves do nothing. When combined
with the following disciplined practices it will produce well-formed, functional,
readable, and maintainable VA Java applications.

• Use proper design and analysis techniques.

• Participate in individual and group code reviews.

• Build upon test-driven development efforts.

• Use continuous integration and coordinated implementation practices.

• Test locally before deployment globally.

• Use known Good (Best) Business Practices and VA Lessons Learned.

• Look for Java programming standards to evolve and move with it.
Take a look at the big picture and see how your contributions and thoughtful
application of these standards helps not only yourself, but the VA as a whole:

• Strongly improves development and inspection communications by
offering a common reference point.

• Reduces the learning curve for new developers tasked with
enhancements.

• Minimizes common coding issues / mistakes often made.

• Discourages improper coding artifacts that lead to defects and failures.

• Encourages code reuse thereby enhancing efficiency.

• Passes on quality Java programming applications and functionality onto
the VA Enterprise Network and beyond.

• Bridges gaps between other departments and in commercial applications.

• Sets standards for present and future VA Java Programming
development.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 2 of 71

1.2 Standards and Conventions Derivation
The key to large-scale Programmer’s adoption of these VA Java programming
conventions and standards, is to make them easy to deploy and relevant to those
who must learn and use them.
JSC draws from the best of the industry-standard Java programming practices
published by Oracle (formerly Sun). Adherence to proper coding conventions /
standards can lead to higher quality software artifacts that are easier to support
and maintain.
This document is broken down into four broad categories of standards:

STANDARD DESCRIPTION

NAMING
(CONVENTION)

The very first aspect of development that requires
convention is how development artifacts are named.
Consistent and proper naming of packages, types,
variables and other code artifacts will help to insure
that any skilled Java Programmer can pick up a piece
of code and understand its function.

DOCUMENTATION All languages provide the ability to create (embed)
inline comments that may be viewed while looking
through the code.
Java has the ability to formally document code (in
line) allowing it to be extracted and presented in the
form of a browsable reference guide.

STYLE The programming style for most programmers is a
matter of preference.
However, there are certain coding / programming
conventions that should be standardized to insure
proper readability and to produce software artifacts
that are easier to maintain.

STATEMENT DESIGN
CLASS DESIGN
POTENTIAL CODING
ISSUES
IMPORTS

Though detailed design is outside of the scope of this
document, there are some programming standards
and conventions related to your design that when
outlined, will help avoid defects.
An example is the use of Boolean. TRUE, Boolean.
FALSE as opposed to new Boolean (true), new
Boolean (false).

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 3 of 71

1.3 The Benefits of Using a Consistent Style
The importance and ultimate benefits of programming using a consistent style
are: improved readability and greater maintainability.
A consistent programming style also facilitates the sharing of code among
programmers, especially in dedicated teams of programmers all working on the
same project.
A consistent programming style supports the use of (and development of)
automated programming tools that can greatly speed up program development.
These types of tools can automatically setup a structured format and frequently
generate “pretty-print” source code for easier code analysis.
From a software group engineering process (and development perspective), a
strong consistent style makes it easier to conduct code reviews. It is easier to
see relationships, commands, loops and integrations. Furthermore, the group VA
engineering practice of regular code reviews only reinforces the overwhelming
need for all VA programmers (including contractors) to learn (and implement)
consistent group styles.
In its truest sense, coding in a consistent style allows programmers to focus on
the semantics of the code rather than wasting time trying to conjure up new
formats.

NOTE:	 Consistency	 of	 coding	 style	 is	 more	 important	
than	 using	 a	 particular	 style.	 When	 a	 given	 situation	
falls	 outside	 of	 the	 scope	 of	 this	 document,	
experience	 and	 informed	 judgment	 should	 be	 used.	 The	
VA	 OI&T	 Java	 Standards	 Committee	 wants	 to	 know	 your	
concerns,	 suggestions,	 and	 coding	 problems.	

1.4 Intended Audience
This document is primarily intended for Java programmers (developers and
maintenance programmers) although it is also of interest to Program Managers,
Systems Architects, Software Quality Assurance (SQA), and Software Technical
Writers.
We fully realize that set, standardized programming guidelines will always be a
compromise and may not equally apply to every situation you encounter. If a
guideline rule exception is found and exercised (a special circumstance), it is
highly recommended to annotate that exception in the actual source code or the
project’s documentation and then seek a waiver from the JSC group. You may
reach the VA OI&T Java Standards Committee here: VAOITJavaStandards
Committee@va.gov.

NOTE:	 The	 most	 important	 consideration	 is	 that	 agreed	
upon	 "best	 practices"	 for	 programming	 Java	 source	 code	
is	 unilaterally	 applied	 in	 a	 pre-‐defined	 (not	
arbitrary)	 manner	 (consistency	 is	 key).	

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 4 of 71

1.5 Terminologies Used in This Guide
Terms and acronyms used throughout this document are defined below.

Table 1 - Acronyms and Definitions

TERM DEFINITION

IDE Integrated Development Environment

Integration Test Exercising a software item, or collection of software items,
as a whole. Integration testing is typically concerned with
confirming behavior and outputs based on inputs or other
stimuli, rather than leveraging knowledge of the
implementation. Integration testing is frequently performed
on the target hardware platform.

JSC Java Standards Committee

lowerCamelCase Naming starts with a lowercase letter and capitalizes the
first letter of any subsequent word or acronym in the name

NHD The National Help Desk. It is located at
http://vaww.essremedy.va.gov
The National Help Desk line is: 888-596-4357

OI&T Office of Information & Technology

PD Product Development

Programming Covers all Java programming including developer and
maintenance programming

Software Artifact A collection of software Items that comprise a computer
program.

Software Item Any identifiable part of a computer program, comprised of
one or more software units.

Software Unit An indecomposable collection of code. A software item that
is not subdivided into other items.

Tools An application used to assist in the development of code
such as an IDE (e.g. Eclipse) or code analysis tool (e.g.
Fortify or CheckStyle).

Unit Test Exercising a software unit in isolation. Unit tests may
leverage knowledge of the specific implementation, and

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 5 of 71

typically does not need to be performed on the target
hardware platform.

UpperCamelCase Naming starts with an uppercase letter and capitalizes the
first letter of any subsequent word or acronym in the name

VA Department of Veterans Affairs

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 6 of 71

1.6 Technology
There are a number of tools/technologies that can be used in conjunction with
the Java Development Environment to guide Java Software Programmers.
In formulating this document the JSC considered various technologies and have
chosen to leverage CheckStyle (an open source technology) for defining and
enforcing programming standards within Java Integrated Development
Environments and Continuous Integration/Build environments.
CheckStyle will help us all implement greater uniformity of code and style.
Using CheckStyle’s code analysis functions (and possibly some other selected
tools) programmers will discover inconsistencies and a myriad of “violations” that
exist.
Not everything flagged is important or relevant to our intent. Some rules (and
violations thereof) are critical to these standards and must be enforced.
The CheckStyle configuration file can be loaded into your IDE and used as an aid
in standards compliance.

Note:	 Both	 the	 installation	 of,	 and	 use	 of	 CheckStyle	
is	 covered	 (see	 TOC	 for	 applicable	 CheckStyle	 sections	
and	 examples).	

1.7 Enforcement

New Projects New project must adhere to standards and any deviation
would require a waiver.

Existing Projects Adherence to pre-existing local standards takes precedence
over the VA Java Programming Standards; however, it’s
highly recommended that non-conflicting standards be
incorporated in the existing code base as time permits. Any
new modules would need to be fully compliant with the
existing team standard that includes all the non-conflicting VA
Java Programming standards. All conflicting standards would
need to be team documented and provided to team members
(including contractors and SQA) to ensure proper compliance.
Note:

o No waiver is required for existing projects that have
conflicting standards.

o JSC will help projects create a custom checkstyle to
reflect these standards

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 7 of 71

1.8 Acknowledgements
Portions of this document are based on Oracle (formerly Sun) programming
styles, conventions, and formats. There are many such Java coding examples
included that should already be familiar to most Java developers.
The guidelines presented here were not created in a vacuum. In the process of
writing this document, the group has read numerous amounts of existing (and
popular) Java code conventions, Java coding articles, visited many Java Internet
Blogs, participated in several Java forums and spoken in depth with our most
seasoned VA programmers.
We have considered popular coding styles being used in current governmental
and commercial practice. All this was in an effort to find common denominators
and best practices for the VA. This work yielded Standards and Conventions that
can be easily learned and with practice, become second nature.
This document builds upon and borrows heavily from several sources listed in
the “References” section at the end of this document. The most heavily used
sources are The Java Language Specification [1] and C++ Style Guide [3] (see
References).
The language and terminology used here, as well as several suggested naming
conventions, are taken directly from The Java Language Specification [1].

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 8 of 71

1.9 Source File Organization
A Java Source File shall contain a single public class or interface.
When private classes and interfaces are associated with a public class, you can
put them in the same source file as the public class.
A public class should be the first class or interface declaration in the file.
A Java source file shall contain the following elements, in the following order:

1. Package declaration.
2. Import declarations.
3. Class comment including description, author and version.
4. One or more class/interface declarations. Starting with the Public class or

interface declaration.

1.10 Source File Naming
A Java source file name shall use the prefix of the name of the class or interface
defined in the source file.
Java Source file names shall use the suffix: .java.
For Example:

Java Source File Name LayoutManager.java contains:

public class LayoutManager{

….

}

1.11 Package Declaration
A Java source file shall contain a package declaration specifying the namespace
to which the class belongs. Omitting the package declaration causes the types to
be part of an unnamed package, with implementation-defined semantics.
For Example:

package gov.va.sample

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 9 of 71

2 NAMING CONVENTIONS
Naming conventions make programs more understandable by making them
easier to read and ensuring consistency.
Naming conventions also provide information about the function of the identifier-
For Example, Whether or not it is a constant, package, or class-which can be
helpful in understanding the code.
The following lists the Java naming standards that shall be adhered to when
coding Java applications.

2.1 Package Names
A package name shall contain only lower-case letters and digits with no
underscore characters.
For Example:

java.lang

java.awt.image

dinosaur.theropod.velociraptor

A unique package prefix is constructed by using the components of the VA
Internet domain name of the host site in reverse order. The top two levels of the
package prefix shall be: gov.va.For Example:

gov.va.security

gov.va.med.pharmacy

Currently COM, EDU, GOV, MIL, NET, ORG, or one of the English two-letter
codes identifying countries as specified in ISO Standard 3166, 1981 are
considered valid for a top level package name.
For more information, refer to the documents stored at ftp://rs.internic.net/rfc
(rfc920.txt and rfc1032.txt).
Rule:

Regex Check: ^[gov.va]+(\.[a-z_][a-z0-9_]*)*$

Violation:
Error

2.2 Type Names
Type names (classes and interfaces) shall use the UpperCamelCase style.
UpperCamelCase naming starts with an uppercase letter and capitalizes the first
letter of any subsequent word in the name. If an acronym is used then only the
first character in the acronym should be capitalized. All other characters in the
name are lowercase. Underscore characters are not to be used to separate
words.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 10 of 71

Rule:
Regex Check: ^[A-Z][a-zA-Z0-9]*$

Violation:
Error

Class names shall be nouns or noun phrases. Classes that implement interfaces
should be suffixed with Impl to differentiate with interface names.
Interface names depend on the salient purpose of the interface.
If the purpose is primarily to endow an object with a particular capability, then the
name shall be an adjective (ending in -able or -ible if possible), that describes the
capability (e.g., Searchable, Sortable, Network Accessible). Otherwise, use
nouns or noun phrases.
For Example:

// GOOD type names:

LayoutManager, AWTException,
ArrayIndexOutOfBoundsException

// BAD type names:

ManageLayout // verb phrase

awtException // first letter lower-case

array_out_of_bounds_exception // underscores

2.3 Member Names
Member variables or non-static fields (reference types, or non-final primitive
types) should follow the lowerCamelCase style. The lowerCamelCase style
begins with a lowercase letter and capitalizes the first letter of any subsequent
word or acronym in the name.
All other characters in member names should be lowercase.
Underscores or other special characters should not be used to separate words.
For Example:

boolean isResizable;

char recordDelimiter;

Rule:
Regex Check: ^[a-z][a-zA-Z0-9]*$

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 11 of 71

Member names shall be nouns or noun phrases. One-character field names
should be avoided except for temporary and looping variables. In these cases,
use the following:

• b for a byte

• c for a char

• d for a double

• e for an Exception object

• f for a float

• g for a Graphics object

• i, j, k, m, n for integers

• p, q, r, s for String, StringBuffer, or char[] objects
There may be exceptions to this list in cases where a strong convention exists for
the use of a single character variable such as the use of x and y to denote screen
coordinates.
The single character variable l (“el”) should not be used because it is hard to
distinguish it from 1 (“one”) on some printers and displays.

2.4 Method Names
Method names should use the lowerCamelCase style.
Start with a lowercase letter and capitalize the first letter of any subsequent word
in the name. If an acronym is used then only the first character in the acronym
should be capitalized. All other characters in the name are lowercase.
Underscores or other special characters should not be used to separate words.
In Java, constructors are not considered methods; constructors always have the
same name as the class.
Rule:

Regex Check: ^[a-z][a-zA-Z0-9]*$

Violation:
Warning

Method names shall be imperative verbs or verb phrases.

NOTE:	 	 	 This	 is	 identical	 to	 the	 naming	 convention	 for	
non-‐constant	 fields.	 However,	 it	 will	 be	 easy	 to	
distinguish	 the	 two	 by	 their	 context	 (verbs	 or	 nouns).	 	

For Example:

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 12 of 71

// GOOD method names:
showStatus(), drawCircle(), addLayoutComponent()

// BAD method names:
mouseButton() // noun phrase; doesn’t describe function
DrawCircle() // starts with upper-case letter
add_layout_component() // underscores

// The function of this method is unclear. Does it start
the
// server running (better: startServer()), or test
whether or not
// it is running (better: isServerRunning())?
serverRunning() // verb phrase, but not imperative

2.5 Constant Names
It is important to differentiate class or instance constant variables from regular
instance variables. The names of fields being used as constants should be all
uppercase characters and individual words should be separated using an
underscore.
For Example:

static final int HTTP_OK_RESPONSE = 200;

static final String GNUTELLA_CONNECT = “GNUTELLA
CONNECT\n\n”;

The following are considered constants:

• All static final primitive types. (Remember that all interface fields are
inherently static final.)

• All static final object reference types that are never followed by "." (dot).

• All static final arrays that are never followed by "[" (square bracket).
For Example:

MIN_VALUE, MAX_BUFFER_SIZE, OPTIONS_FILE_NAME

Rule:
Regex Check: ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 13 of 71

2.6 Parameter Names
Parameter names should be short yet meaningful. The choice of a parameter
name should indicate what is being passed.
Parameter names for public and protected methods often become part of the
class/interface contract and are published in the Javadoc, therefore meaningful
names are extremely important.
Names such as arg0 or single character parameter names should be avoided.
Parameter names should follow the lowerCamelCase style.
For Example:

void updatePatientData(String patientKey, String
patientData) {

 ….

}

Rule:
Regex Check: ^[a-z][a-zA-Z0-9]*$

Violation:
Warning

2.7 Static Variable Names
Static Variable names should be short yet meaningful. The choice of a variable
name should be mnemonic- that is, designed to indicate to the casual observer
the intent of its use.
One-character variable names should be avoided.
Static variable name should follow the lowerCamelCase style.
For Example:

static String logFilePath = null;

Rule:
Regex Check: ^[a-z][a-zA-Z0-9]*$

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 14 of 71

2.8 Specific Naming Conventions
1. The terms get or set shall be used where an attribute is accessed directly.

This is the naming convention for accessor methods used by Oracle for
the Java core packages (mandatory for Java) and is part of the Bean
Pattern.
A method to get or set a property of the class should be called
getProperty() or setProperty() respectively, where Property is the name of
the property.

For Example:
getHeight(), setHeight()

2. The is prefix shall be used for Boolean variables and methods.
This is the naming convention for Boolean methods and variables used by
Oracle for the Java core packages.
When writing Java beans this convention is actually enforced for methods.
Using the is prefix solves a common problem of choosing bad Boolean
names like status or flag. isStatus or isFlag simply does not fit, and the
Programmer is forced to choose names that are more meaningful.

For Example:
isSet, isVisible, isFinished, isFound, isOpen

There are a few alternatives to the is prefix that works better in some
situations. These are has, can, and should prefixes.

For Example:
Boolean hasLicense();

Boolean canEvaluate();

Boolean shouldAbort = false;

3. JFC (Java Swing) variables should be suffixed by the type of the JFC
element.
This convention enhances readability since the name gives the user an
immediate clue of the type of the variable and thereby the available
resources of the object.

widthScale, nameTextField, leftScrollbar, mainPanel,

fileToggle, minLabel, printerDialog

4. Negated Boolean variable names should not be used.
A problem arises when the logical not operator is used and a double
negative arises. It is not immediately apparent what !isNotError means.

boolean isError; // NOT: isNotError

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 15 of 71

boolean isFound; // NOT: isNotFound

5. Exception classes should be suffixed with Exception.
class AccessException

Exception classes are really not part of the main design of the program,
and adding this suffix allows them to stand out relative to the other
classes.

NOTE:	 This	 standard	 is	 followed	 by	 Oracle	 (formerly	
Sun)	 in	 the	 basic	 Java	 library.	

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 16 of 71

3 DOCUMENTATION
Java supports two kinds of comments: documentation and general.

• General Comments are comments which are delimited by /*...*/, and //.
General comments are meant to aid developers in further understanding
code and implementation decisions.

• Documentation Comments (known as "doc comments") are comments,
which adhere to the requirements of the Javadoc technology to allow
documentation to be extracted to HTML files. Documentation comments
are meant to describe the specification of the code and its intended use
from an implementation-free perspective.

Comments should be used to give overviews of code and provide additional
information that is not readily available in the code itself.
Comments should contain only information that is relevant to reading and
understanding the program. For Example, information about how the
corresponding package is built or in what directory it resides should not be
included as a comment.
Discussion of nontrivial or unobvious design decisions is appropriate, but avoid
duplicating information that is present in (and clear from) the code.
It is too easy for redundant comments to get out of date.

NOTE:	 In	 general,	 avoid	 any	 comments	 that	 are	 likely	
to	 get	 out	 of	 date	 as	 the	 code	 evolves.	 	

Comments should not be enclosed in large boxes drawn with asterisks or other
characters and should not include special characters such as form-feed and
backspace.

General guidelines for comment usage are listed below. These are described
separately in the subsequent sections:

• Comments should help a reader understand the purpose of the code.
They should guide the reader through the flow of the program, focusing
especially on areas that might be confusing or obscure.

• Avoid comments that are obvious from the code, as in this famously bad
comment example:

i = i + 1; // Add one to i

• Remember that misleading comments are worse than no comments at all.

• Avoid putting any information into comments that is likely to become out-
of-date.

• Temporary comments that are expected to be changed, or removed later,
shall be marked with the special tag “XXX:” so that they can easily be
found afterwards.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 17 of 71

• Ideally, all temporary comments shall have been removed by the time a
program is ready to be shipped.

For Example:
// XXX: Change this to call viewOrder() when the bugs

// are fixed

NOTE:	 Please	 refer	 to	 listed	 References	 [11]	 and	 [13]	
for	 further	 guidance	 in	 proper	 comment	 placement	 and	
usage.	

3.1 Beginning Comments
Source files should begin with a comment that describes the class/interface and
provides the name(s) of the author(s).
Some source code control systems also provide the ability to leverage tags that
are replaced with the last update date and version number.
For Example:

/*

 * Description

 * Author

 * Usage Restrictions

 */

Violation:
Warning

3.2 General Comment Formats
Programs can have four styles of implementation comments:

• BLOCK COMMENTS

• SINGLE-LINE COMMENTS

• TRAILING COMMENTS

• END-OF-LINE COMMENTS
3.2.1 Block Comments
Block comments are used to provide descriptions of files, methods, data
structures and algorithms.
Block comments may be used at the beginning of each file and before each
method or they can be used in other places, such as within methods.
Block comments inside a function or method should be indented to the same
level as the code they describe.

Goncer, Asli � 2/5/2016 3:58 PM
Comment [1]: Because of this last sentence prior
to the example, it leads you to believe the example
shows this date/version usage. So the example may
be a little confusing.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 18 of 71

A block comment should be preceded by a blank line. This sets it apart from the
rest of the code.
For Example:

/*

 * Here is a block comment.

 */

indent(1) is a program that makes code easier to read by inserting or deleting
whitespaces. Block comments can start with /*-, which is recognized by indent(1)
as the beginning of a block comment that should not be reformatted.
For Example:

/*-

 * Here is a block comment with some very special

 * formatting that I want indent(1) to ignore.

 *

 * one

 * two

 * three

 */

NOTE:	 If	 you	 do	 not	 use	 indent(1),	 you	 do	 not	 have	 to	
use	 /*-‐	 in	 your	 code	 or	 make	 any	 other	 concessions	 to	
the	 possibility	 that	 someone	 else	 might	 run	 indent(1)	
on	 your	 code.	

3.2.2 Single-Line Comments
Short comments can appear on a single line indented to the level of the code that
follows. If a comment cannot be written in a single line, it should follow the block
comment format (see Section 3.1.1). A single-line comment should be preceded
by a blank line, unless it is the first line following a “{“.
Here is an example of single-line comments in Java code (also see
"Documentation Comments" in section 3.4.2):

if (condition) {

 /* Initial Comment */

 doSomething();

 /* Handle the condition. */

 ...

}

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 19 of 71

3.2.3 Trailing Comments
Trailing comments are very short comments that appear on the same line as the
code they describe.
Trailing comments should be shifted far enough to the right in order to separate
them from the statements.
Multiple trailing comments contained in a section of code should be indented to
the same tab setting.
Here is a sample of a trailing comment used in good Java code:
For Example

if (a == 2) {

 return TRUE; /* special case */

} else {

 return isPrime(a); /* works only for odd a */

}

3.2.4 End-Of-Line Comments
The // comment delimiter can comment out a complete line or only a partial line.
The // comment delimiter should not be used on consecutive multiple lines for
text comments.
However, it can be used in consecutive multiple lines for commenting out
sections of code.
Examples of all three styles follow:

if (foo > 1) {

 // Do a double-flip.

 ...

} else {

 return false; // Explain why here.

}

//if (bar > 1) {

// // Do a triple-flip.

// ...

//}

//else {

// return false;

//}

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 20 of 71

3.3 Comments with TODO or FIXME
In addition to general comments, some IDEs allow developers to place TODO
and FIXME comments in code to indicate areas where there is additional work to
be completed or a known issue needs to be corrected.
These types of comments indicate that the code is not complete.
Released source code shall not contain TODO and FIXME comments.
Rule:

Code check – looks for comments in the form:

//TODO: something needs to be done

//FIXME: something needs to be fixed

Violation:
Error

3.4 Javadoc Comments
Javadoc is not just another way of commenting your code. It provides a powerful
mechanism for documenting code through Javadoc style comments that can then
be extracted as documentation in the form of HTML pages using the Javadoc
tool.
Classes, public methods, and important fields shall be commented using
Javadoc style comments.
This does not mean that you should forget about normal commenting - normal
comments and Javadoc comments can, and should, exist side by side in your
program!
For Example:
Classes are commented as:

/**

* Car represents cars ... A description of the class

* should be place here. Note that the description begins

* on the second line and that there is a space between

* the asterisk and the text. Next we will add some fields

* indicating who the authors of the class are and

* other useful information. Notice the newline!

*

* @author Sachin Sharma

* @usage restrictions

*/

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 21 of 71

public class Car{

NOTE:	 	 There	 is	 no	 extra	 newline	 between	 the	 end	 of	
the	 Javadoc	 comment	 and	 the	 beginning	 of	 the	 class.	 	

Methods may be commented as shown in this example:
/**

* A description of what the method does...

*

* @param n a description of the parameter

* @return a description of the return value

*/

public int factorial(int n){

Some, but not all, fields are commented using Javadoc:
/**

* Short description of the variable (one line)

*/

type variable;

What should be commented using Javadoc and what should be commented
normally?

Well, think of it this way. Everything you comment using Javadoc will be
seen on the document pages of your classes.

A person reading this documentation would be most interested in what the class
represents, what methods it contains, how to use these methods (what type of
arguments are to be given), and what they will return.
Some fields, such as public variables or constants, might also be of general
interest.
You should assume that a person only wants to use your class without knowing
anything about what it really looks like inside.
This is the information that you should provide, and this can be done using
Javadoc comments.

NOTE:	 The	 things	 you	 should	 not	 comment	 using	 Javadoc	
are	 the	 things	 that	 are	 of	 interest	 to	 the	 Programmer	
who	 wants	 to	 modify	 the	 contents	 of	 your	 class.	

Normal comments should help the reader of the code understand all its inner
details and secrets.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 22 of 71

3.5 Type Javadoc
It is important that every Type (Class or Interface) be documented outlining the
role of the Type and its intended usage.
Types that have a package, protected or public scope, should include a Javadoc
comment that describes the Type.
For Example
Refer to the example used in paragraph 3.3 as a good code example.
Rule:

Code check – looks for missing Javadoc comments Classes
and

Interfaces which have a scope of package, protected or
public.

Violation:
Warning

3.6 Method Javadoc
A method that is scoped at a package, protected or public level should include a
Javadoc comment.
This Javadoc comment should describe the method, outline the parameters,
return types, and document the exceptions thrown from the method.
Methods that leverage the @Override tag and are not polymorphic in nature do
not require a Javadoc comment.
Methods that implement an interface should use the @see tag to refer to the
documentation in the interface.
For Example:

//use of @override tag:

public class Animal {

 /**

 * Returns the animal text sound.

 *

 * @return Animal Sound

 */

 public String show animalSoundText(){

 return "animalSoundText";

 }

}

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 23 of 71

public class Cat extends Animal{

 @Override

 public final String animalSoundText(){

 return "myyyaaww";

 }

}

Here is the interface that contains the method Javadoc.
For Example: The Description:

//use of @see tag:

/**

* A description of what the method does...

*

* @param purchaseAmount – Amount of Purchase

* @return Fees associated with purchase

*/

public int calculateFees(int purchaseAmount);

Here is a class method that implements the interface
above:

/** {@inheritDoc}

* @see src.PurchaseChargesInterface#calculateFees (int purchaseAmount)

*/

public int calculateFees (int purchaseAmount) {

…

}

NOTE:	 This	 convention	 works	 with	 Javadoc	 but	 has	 a	
warning	 with	 VACheckStyle.xml	 that	 can	 be	 removed	 by	
adding	 the	 {@inheritDoc}	 annotation	 (see	 example	
above).	 	

Rule:
Code check which looks for methods with a scope of
package, protected or public that do not have a Javadoc

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 24 of 71

comment or have a Javadoc comment that is missing the
required annotations and does not leverage the @Override
tag or @see tag to refer to an interface or super class
that has the appropriate documentation.

Violation:
Warning

3.7 Variable Javadoc
Variables with a package, protected or public scope should be documented to
insure proper understanding and usage.
Though most variables are scoped private (to insure that variables are scoped
properly and documented properly) it is important to provide a Javadoc comment
for all visible variables.
For Example:

/**

* Description of the variable here.

*/

protected boolean isResizable;

Rule:
Code check which looks for class or interface level
variables

which are of package, protected or public scope, but do
not have

a Javadoc comment associated.

Violation:
Warning

3.8 Style Javadoc
Javadoc comments should be well written and conform to the proper style as
outlined in the referenced Javadoc documentation.
The following are general guidelines for producing well-formed and proper
Javadoc comments in your code:

• The first sentence of a Javadoc comment should end with proper
punctuation (That is a period, question mark, or exclamation mark, by
default). Javadoc automatically places the first sentence in the method
summary table and index. Without proper punctuation, the Javadoc may
be malformed. All items eligible for the {@inheritDoc} tag are exempt from
this requirement.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 25 of 71

• Javadoc statements should have a description. This includes both
completely empty Javadoc, and Javadoc with only tags such as @param
and @return.

• HTML tags should be completed and well-formed.

• HTML tags should have corresponding end tags.

• The use of package level HTML documentation is not strictly enforced.
However, if used, it should follow HTML rules and be well-formed.

• Only tags approved for use in Javadoc should be used when using HTML
tags. The list of valid HTML tags can be found in the Javadoc reference
documentation.

NOTE:	 These	 checks	 were	 patterned	 after	 the	 checks	
made	 by	 the	 DocCheck	 doclet	 available	 from	 Oracle.	

Change	 DocCheck	 link	 to:	
http://www.oracle.com/technetwork/java/javase/document
ation/index-‐137868.html#doccommentcheckingtool	

Rule:
This is a code check that looks for Type, Method, and
Variable Javadoc comments and insures that they are well
formed and follow proper style.

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 26 of 71

4 STYLE
Coding style deals with issues not related to design or documentation, but related
to the style of coding. These standards address readability and maintainability of
code based on the developers style of coding.

4.1 Coding Size Limits
It has been proven that code readability and maintenance can be impacted by
the style of coding which results in excessively long source files or coding
artifacts.
Some areas can result in defects downstream or maintenance problems, others
have less of an impact, but need to be addressed.
This section deals with size limits on various aspects of Java programming.

4.2 Maximum Line Length
Long lines may be hard to read in printouts or on the screen. If developers have
limited screen space long lines may wrap or be cut-off making the code difficult to
understand.
The maximum length of a line shall be 128 characters.
Hint:
Eclipse will always provide a line gutter.

Open Preferences, go to General -> Editors -> Text
Editors . There’s a “Show print margin” setting. That
will set the right gutter.

Rule:
Limit Character Count 128

Violation:
Error

4.3 Maximum File Length
Source files that become excessively long can indicate a design issue and may
be hard to understand or maintain.
Java source files shall contain 2000 or less lines of code.
Long classes require re-factoring into smaller classes.
Rule:

Line Count 2000

Violation:
Error

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 27 of 71

4.4 Maximum Anonymous Inner Class Length
Anonymous inner classes should be used for highly specialized cases. If an
anonymous inner class is used, the maximum number of lines of code in the
class should be limited to 40.
Because an inner class is enclosed in a public class, very long inner classes can
become hard to read and understand.
It may be difficult for the developer to follow the flow of the method where the
class is defined.
Rule:

Line Count 40

Violation:
Warning

4.5 Maximum Method Length
The body of a method shall be 150 lines or less.
Where a method involves a large number of statements it must be broken up into
additional methods called by the primary method.
Long method bodies are hard to understand and maintain.
Method bodies that exceed 150 lines will be flagged as an error requiring
refactoring into smaller methods.
Rule:

Line Count 150

Violation:
Error

4.6 Maximum Number of Parameters
As an object oriented programming language (OOPL), Java developers have a
number of approaches for passing parameters into a constructor or method.
Methods and constructors that involve passing an excessive number of
parameters can be hard to read and understand.
The maximum number of constructor or method parameters should be seven.
Methods and constructors exceeding this limit will be flagged with a warning and
the developer should make every attempt to re-factor the code to reduce the
number of parameters passed.
This may involve introduction of a class that can carry the desired parameters.
Rule:

Parameter Count 7

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 28 of 71

Violation:
Warning

4.7 Whitespace
The use of whitespace within Java code is a matter of personal preference and
style. However, some areas can result in code that is difficult to read and
maintain.
The following two standards are such areas.

4.8 Operator Wrap
The use of operators can lead to a need to wrap them on a different line.
Defining a consistent mechanism for wrapping operators will help to insure that
developers become accustomed to standard style for handling this area and
improve overall readability and maintenance.
Operators that are used in a statement that is continued on more than one line
should be the first item on the continuing line.
For Example:

//INCORRECT

Modifier.isPublic(member.getModifiers()) &&

Modifier.isPublic(clazz.getModifiers());

//CORRECT

Modifier.isPublic(member.getModifiers())

&& Modifier.isPublic(clazz.getModifiers());

Rule:
Code Check – Check for lines ending with &&, ||, & and
similar

characters

Violation:
Warning

4.9 Tab Character
Tab characters shall not be used in Java code.
The use of the tab character (‘\t’) in Java programming can have a hidden impact
on the readability of the code. The use of the tab character may require
developers to configure tab widths in their editor to properly view and edit code.
Additionally tabs can affect the source code control system and the ability to
email code.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 29 of 71

Hint:	 In	 Eclipse	 you	 can	 replace	 tabs	 with	 spaces	 by	
selecting:	 	

Preferences-‐>General-‐>Editors-‐>Text	 Editors	 Insert	
spaces	 for	 tabs	

Rule:
Code Check – Existence of Character ‘\t’

Violation:
Error

4.10 Modifier Order
 The order in which code appears based on the modifiers is a matter of style;
however, consistently ordering code based on visibility helps improve readability
and maintainability. Code should be structured such that items with public
visibility (most relevant to the consumer) appear first in the source code.

The following order should be followed for best results:

1. public
2. protected
3. private
4. abstract
5. static
6. final
7. transient
8. volatile
9. synchronized
10. native
11. strictfp

Rule:
Code Check – the sequence of code based on scope is
evaluated to ensure that it follows the outlined order
with public scoped items appearing first.

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 30 of 71

5 DESIGN
5.1 Simple Statements
A line of code shall contain at most one statement.
For Example:

a = b + c; count++;// WRONG

a = b + c; // RIGHT

count++; // RIGHT

Exceptions to this rule are compound looping statements.

5.2 Compound Statements
Compound statements are statements that contain lists of statements enclosed
in braces "{ statements }".
Study the following sections for appropriate compound statement examples.

• The enclosed statements should be indented one more level than the
compound statement.

• The opening brace should be at the end of the line that begins the
compound statement.

• The closing brace should begin a line and be indented to the beginning of
the compound statement.

• Braces should be used around all statements, even single statements,
when they are part of a control structure such as an if-else or for
statement. This makes it easier to add statements without accidentally
introducing bugs due to forgetting to add braces.

For Example
for (int i=0; i<aVariable; i++) {

 doSomething(i);

}

5.3 Return Statements
A return statement within a value should not use parentheses unless they make
the return value more obvious in some way.
For Example:

//Correct

return myDisk.size();

return (size ? size : defaultSize);

//Incorrect

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 31 of 71

return (myDisk.size());

5.4 if, if-else, if else-if else Statements
The if-else class of statements should be structured in the following form:

if (condition) {

 statements;

}

if (condition) {

 statements;

} else {

 statements;

}

if (condition) {

 statements;

} else if (condition) {

 statements;

} else {

 statements;

}

NOTE:	 if	 statements	 always	 use	 braces	 {}.	 Avoid	 the	
following	 error-‐prone	 form:	

if (condition) //AVOID! THIS OMITS THE BRACES {}!

statement;

5.5 For Statements
A for statement should have the following form:

for (initialization; condition; update) {

 statements;

}

An empty for statement (one in which all the work is done in the initialization,
condition, and update clauses) should have the following form:

for (initialization; condition; update);

When using the comma operator in the initialization or update clause of a for
statement, please avoid the complexity of using more than three variables.
If needed, use separate statements before the for loop (for the initialization
clause) or at the end of the loop (for the update clause).

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 32 of 71

For Example:
//Incorrect

for (int i=1, j=1, k=1, m=1; condition; i++, j++, k++,
m++) {

 …

}

//Correct

j=1;

k=1;

m=1;

for (i=1; condition; i++) {

 …

 j++;

 k++;

 m++;

}

5.6 While Statements
A while statement should have the following form:

while (condition) {

 statements;

}

An empty while statement should have the following form:
while (condition);

5.7 Do-while Statements
A do-while statement should have the following form:

do {

 statements;

} while (condition);

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 33 of 71

5.8 Switch Statements
A switch statement should always include a default statement.
Switch statements without a default cause maintenance issues.
A switch statement without a default does not convey the original intent and may
result in a defect in the code.A missed default may result in a code path not
intended by the developer.
Rule:

Code Check – Look for switch statements where no default
has been

provided.

Violation:
Warning

A switch statement should have the following form:
switch (condition) {

case ABC:

 statements;

 /* falls through */

case DEF:

 statements;

 break;

case XYZ:

 statements;

 break;

default:

 statements;

 break;

}

For case statements that are intended to fall through (doesn't include a break
statement), add a comment where the break statement would normally be.
This is shown in the preceding code example with the /* falls through */ comment.
A switch statement should include a default case. The break in the default case
is redundant, but it prevents a fall-through error if later another case is added.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 34 of 71

5.9 Try-catch Statements
A try-catch statement should have the following form:

try {

 statements;

} catch (ExceptionClass e) {

 statements;

}

A try-catch statement may also be followed by finally, which executes regardless
of whether or not the try block has completed successfully.

try {

 statements;

} catch (ExceptionClass e) {

 statements;

} finally {

 statements;

}

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 35 of 71

6 CLASS DESIGN
6.1 Design for Extension
Java is an object oriented language. Java classes should be designed with
extension usage in mind.
Java classes that contain only non-private and non-static methods shall use an
abstract, final, or have an implementation modifier.
A class that is not designed for an extension will be flagged with a warning to
allow the developer to reconsider the programming approach.
Rule:

Code Check – Class has non-private or non-static methods
and does

not have an implementation or is not declared abstract or
final

Violation:
Warning

6.2 Final classes
A class that does not have a public constructor shall be marked with a final
modifier.
This indicates that it is not intended to be extended and helps insure a proper
understanding of the extensibility of the class.
Classes like this that do not declare the class final, will be marked with an error to
help the developer re-evaluate whether the constructor needs to be marked
protected and therefore extensible or final indicating that no specialization is
expected.
For Example:

Public final class xyz{}

Rule:
Code Check – Class has only private constructors and is
not marked final

Violation:
Error

6.3 Utility classes
If a class has only public methods, it may be considered a utility class.
The constructors of a utility class shall be marked private or protected to ensure
that it is not improperly used.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 36 of 71

An error will be flagged where a utility class has exposed the constructor as
public and yet all methods are marked static.
Rule:

Code Check – Class with only static methods and does not
have constructors marked as private or protected.

Violation:
Error

6.4 Coding Metrics - Number of Conditions
The maximum number of Boolean conditions in a given expression should be 5.
Expressions which have a large number of Boolean conditions chain together by
&&, ||, &, | or ^ can result in code that is hard to read and maintain.
If it is necessary to have more than 5 Boolean conditions, then it is
recommended that the code should be broken up to make it more readable and
easier to maintain.
Coding Metrics - A Sample Violation:

if ((a == b || b == c) &&c==d && (d == e || f == e) &&
x==y) {

Remediation:
if ((a == b || b == c) {

 If (c==d && (d != e && f != e) && x==y) {

Rule:
Limit on Conditions in a single Expression 5

Violation:
Warning

6.5 Class Fan Out Complexity
A class should be dependent on 20 or fewer classes.
A factor of code complexity and overall maintenance complexity is the number of
classes that a given class depends on. A class that has a dependency on more
than 20 other classes indicates a level of effort in maintenance four or more
times that of a class that has a dependency on 20 or fewer classes.
As the number of dependencies increases, the required level of effort to maintain
this code will increase by the number of dependencies - squared.
Rule:

Limit Class Dependency 20 Classes

Violation:

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 37 of 71

Warning

6.6 Cyclomatic Complexity
Cyclomatic or conditional complexity provides a metric that helps identify the
number of linearly independent paths that can be taken through a given class.
Higher numbers indicate greater code complexity and can indicate code that is
difficult to read and maintain.
Conditional complexity is difficult to avoid, but the overall cyclomatic complexity
of a class should be 10 or less.
Rule:

Limit Cyclomatic Complexity 10

Violation:
Warning

6.7 Duplicate Code
Sequences of Java code should not be duplicated.
Duplication of code, unless through code generation, can lead to code that is
difficult to maintain.
Even in the case of code generators, maintenance can become burdensome if
the code needs to be maintained outside of the context of the code generator.
This is largely due to the independence of code segments. A required change
may need to be applied to all copies of the code with the possibility of missing
one. This would cause a deviation and over time could lead to significant
differences.
Some duplication of code cannot be avoided, but it should not be the norm.
Avoid duplication of code by properly designing classes to allow for re-use or by
leveraging utility classes.
Rule:

Code Check – Search for sequences of Java code which
differ only in indentation.

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 38 of 71

7 POTENTIAL CODING ISSUES
7.1 Empty Statements/Empty Blocks
Java code should not contain an empty statement. Though empty statements
and empty blocks may have their place, they generally make the code difficult to
read and understand.
The following example of an empty statement is legal and very concise:

for (; in.available() != 0; sbuf.append(in.readline());

However the following is much easier to read
while (in.available() != 0) {

 sbuf.append(in.readline());

}

Empty statements generally indicate a misplaced semicolon and can point to a
potential defect.
For Example:

for (int i=0; i<; i++); <- Problem

Var[i]=”Some value”;

The above example points to two statements that should be linked, but are not
because of the misplaced semicolon.
Empty blocks like empty statements may be valid, but generally point to potential
problems.
One example of an empty block most commonly seen is the empty catch block.
Though there are valid cases when this is used such as ignoring exceptions in
special cases, it does not indicate to other developers if this was intentional or a
coding mistake.
Java code should not contain an empty block.
Empty blocks do not promote code readability and may create maintenance
problems as other developers try to understand the intention of the empty block.
Empty Block Example:

for (int i=0; i<x; i++) {} <- Empty

try {

….do something…

} catch (Exception e) {} <- Empty

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 39 of 71

Rule:
Code Check – looks for cases where there are statements
with no action or blocks that have no action.

Violation:
Warning

7.2 Equals and HashCode
A common coding problem is overriding the implementation of equals() but failing
to also override the used hashCode().
The contract of the equals() method depends on the hashCode() and therefore
when overriding one the other should be overridden to provide clarity of intent in
the code and to enforce the contract.
Failure to properly implement equals() and hashCode() can lead to problems in
other areas of the code which depend on these two methods.
For Example:

//Incorrect

public class CustomerID {
 private long crmID;
 private int nameSpace;

 public CustomerID(long crmID, int nameSpace) {
 super();
 this.crmID = crmID;
 this.nameSpace = nameSpace;
 }

 public boolean equals(Object obj) {
 //null instanceof Object will always return false
 if (!(obj instanceof CustomerID)) {
 return false;

 }
 if (obj == this) {
 return true;

 }
 return this.crmID == ((CustomerID) obj).crmID &&
 this.nameSpace == ((CustomerID)
obj).nameSpace;
 }

 public static void main(String[] args) {
 Map m = new HashMap();
 m.put(new CustomerID(2345891234L,0),"Jeff Smith");
 System.out.println(m.get(new
CustomerID(2345891234L,0)));

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 40 of 71

 }

}

If you compiled and ran the above code, the output result is
null

What is wrong with this?

• The two instances of CustomerID are logically equal according to the
class's equals method.

• Because the hashCode() method is not overridden, the identities for these
two instances are not in common to the default hashCode implementation.

• Therefore, the Object.hashCode returns two seemingly random numbers
instead of two equal numbers. Such behavior violates "Equal objects must
have equal hash codes" rule defined in the hashCode contract.

//Correct:

Let us provide a simple hashCode() method to fix this problem:
public class CustomerID {
 private long crmID;
 private int nameSpace;

 public CustomerID(long crmID, int nameSpace) {
 super();
 this.crmID = crmID;
 this.nameSpace = nameSpace;
 }

 public boolean equals(Object obj) {
 //null instanceof Object will always return false
 if (!(obj instanceof CustomerID)) {
 return false;

 }
 if (obj == this) {
 return true;

 }
 return this.crmID == ((CustomerID) obj).crmID &&
 this.nameSpace == ((CustomerID)
obj).nameSpace;
 }

 public int hashCode() {
 int result = 0;
 result = (int)(crmID/12) + nameSpace;
 return result;
 }

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 41 of 71

 public static void main(String[] args) {
 Map m = new HashMap();
 m.put(new CustomerID(2345891234L,0),"Jeff Smith");
 System.out.println(m.get(new
CustomerID(2345891234L,0)));
 }

}

When you compile and run the above code, the output result is
Jeff Smith

Rule:
Code Check – Looks for override of the equals() method
then checks that the hashCode() method has also be
overridden.

Violation:
Warning

7.3 Inner Assignment
Inner assignments should not be used.
The use of inner assignments though elegant and concise create both code
readability problems and may present problems in the debugger.
For Example:

//Incorrect

string sPos = Integer.toString(pos = recordLocation + 1);

//Correct

pos = recordLocation + 1;

string sPos = Integer.toString(pos);

Though the incorrect example is perfectly legal, it may be difficult to read and
within the debugger the value of what is passed in to toString() may not be
visible.
Avoid such inner assignments with the exception of “for” loops where they are
legal.
Rule:

Code Check – Looks for assignments that have inner
assignments

embedded.

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 42 of 71

Magic Number
A numeric literal should only be used in an assignment to a constant.
The use of numeric literals such as 0, 1, -1, 9999, etc. that are not defined as
constants is considered a bad coding practice.
The use of magic numbers can lead to code that is harder to maintain as the
developers have to search for occurrences of a magic number when trying to
debug or modify code.
For Example:

//Incorrect

while (i<1000){

 …

}

//Correct

static final int BUILD_TEST_SET_SIZE = 1000;

while (i<BUILD_TEST_SET_SIZE){

 …

}

Rule:
Code Check – Looks for instances of Integer, Float,
Double and Long where a number is used rather than a
constant.

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 43 of 71

7.4 Boolean expressions and returns
Complex Boolean expressions should not be used.
The use of complex Boolean expressions and/or return statements that involve
complex Boolean expressions can lead to code that is hard to read and maintain.
An example of complex Boolean expressions and return statements include the
following:

Complex Boolean Expression:

if ((a == true || !b) && (c|| rt.isValid() ||

 !rt.isValidMessage())){

 …

}

Complex Boolean Return:

if (rt.isValid()) {

 return false;

} else {

 return true;

}

This could be written like this:
 return rt.isValid();

Rule:
Code Check – Checks code for instance of Boolean
expressions or Boolean return statements with too many
terms.

Violation:
Warning

7.5 Nested Blocks
Nested blocks should not be used.
Nested blocks often confuse the reader.
Most often nested blocks are the result of improper commenting or removal of
debugging statements.
An example of a nested block:

public void someMethod() {

 string message=”Test Message”;

 {

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 44 of 71

 message=”My Message”;

 }

}

//if (logger.isDebugEnabled())

{

 Logger.debug(“This message”);

}

Rule:
Code Check – Code is searched for freely used blocks.

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 45 of 71

8 IMPORTS
8.1 Wildcard imports
Import statements should contain fully qualified type names. Wildcard type-
import-on-demand declarations (e.g. import java.util.*;) should not be used,
unless Java reflection is used. Reasons for this include:

• Someone can later add new unexpected class files to the same package
that you are importing. This new class can conflict with a type you are
using from another package, thereby turning a previously correct program
into an incorrect one without touching the program itself.

• Explicit class imports clearly convey to a reader the exact classes that are
being used (and which classes are not being used).

• Explicit class imports provide better compile performance. While type-
import-on-demand declarations are convenient for the Programmer and
save a little bit of time initially, this time is paid for in increased compile
time every time the file is compiled.

Most IDEs have a shortcut to format and organize the import statements (In
Eclipse: Ctrl+Shift+O).

NOTE:	 Use	 this	 function	 regularly	 and	 certainly	 before	
releasing	 the	 code	 for	 testing.	

Rule:
Code Check – Looks for imports that leverage the *
notation to

import dependent Types.

Violation:
Warning

8.2 Illegal imports
Import statements shall not contain a name of an Oracle.* package.
Though Java is portable between Java Runtime Environments (JRE), it is
possible to implement code that is dependent on a specific JRE, using illegal
imports.
For Example the direct import of Oracle.* packages will result in code that is no
longer 100% pure Java, therefore limiting the portability between JREs.
Rule:

Code Check – Looks for imports of the Oracle.* packages
within the

code.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 46 of 71

Violation:
Error

8.3 Unused imports
Java code should not contain unused import statements.
Most IDEs provide a mechanism for automatic addition of imports and removal of
unused imports.
It is important to remove unused imports to eliminate artificial binding to Types
(classes and interfaces) that are not used within the enclosing class.
Failure to remove unused imports can result in code that does not compile or
drives developers to include class libraries that are not actually required.
Rule:

Code Check – Looks for instance of imports with the
following characteristics: Evaluates only direct imports,
not wildcard imports such as java.io.*; An import
duplicates another import; The class imported is from the
java.lang package; A class imported is from the same
package; the class imported is not used within the
enclosing class.

Violation:
Warning

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 47 of 71

9 CHECKSTYLE INSTALLATION
The steps for installing CheckStyle may vary depending on the version of Eclipse
or IBM Rational tool you are using.
Prior to installation, please review the CheckStyle home page at the following
link: http://checkstyle.sourceforge.net/index.html for specific information about
your IDE.
For Rational and Eclipse developers the CheckStyle plug-in can be downloaded
from the following link: http://eclipse-cs.sf.net/update/.
Installation of CheckStyle involves downloading the Eclipse plug-in and
extracting the contents. The process is as follows:

1. Within the Eclipse workbench (Luna), select Help -> Install New
Software...

Figure 1 - Eclipse Screen Shot

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 48 of 71

2. Select Add… and complete the presented dialog (see Figure 1). Note:
Unchecked ‘Contact all update sites during install to find required
software’ to remove installation failure.

3. Confirm the selection of features to install (only Checkstyle is needed).
4. Select it and click next. Note: Eclipse will ask about installing unsigned

content. Ok past security warning.
5. Agree to the license agreement. This will add CheckStyle to your IDE.

CheckStyle comes with a CheckStyle configuration based on the Oracle
(formerly Sun) Java Coding Standards.
To load the VA CheckStyle configuration download a copy of the
VACheckStyle.xml file:http://trm.oit.va.gov/files/VACheckStyle.xml.

1. In the IDE, proceed to Preferences -> CheckStyle -> New.
2. Select External Configuration and provide the Name VACheckStyle.
3. Browse to where VACheckStyle.xml was saved and then select it. This will

configure the VA CheckStyle.
4. Once it is configured, select it as the default by clicking the Set As Default

button.
CheckStyle is now fully configured with the VA CheckStyle configuration based
on the standards in this document.
CheckStyle operates in two modes:

• CONTINUAL

• AS NEEDED.
To activate continual checking right click on your project and select CheckStyle -
> Activate.

1. To check code periodically as needed right click on your project and select
CheckStyle -> Check code with CheckStyle.

2. In both cases, CheckStyle violations are displayed in the Problems View
of Eclipse and Rational Tools.

NOTE:	 CheckStyle	 doesn’t	 allow	 tabs	 within	 source	
code.	 	

Please	 use	 Eclipse	 replace	 tabs	 with	 spaces	 by:	 	

Preferences-‐>General-‐>Editors-‐>Text	 Editors	 Insert	
spaces	 for	 tabs	

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 49 of 71

10 JAVA PROGRAMMING RULES
The following table is a summary of the coding rules contained in this document.
The “Required” column denotes which rules must be adhered to (error) and
which rules are guidelines (warning). The “Auto” column refers to automated
checking of this rule using CheckStyle.

• lowerCamelCase refers to a naming style that begins with a lower case
letter and continues with capitalization of each subsequent word in the
name.

• If an acronym is used then only the first character in the acronym should
be capitalized. All other characters in the name should be lower case.
Underscores or other special characters should not be used to separate
words.

• UpperCamelCase is the same as described above except that the name
begins with an upper case letter.

CATEGORY RULE REQUIRED AUTO

SOURCE FILE A Java source file shall contain a
single public class or interface

Yes No

A public class or interface
declaration should be the first
class or declaration in the file

No No

A Java source file shall contain the
following elements, in the following
order:

1. Package declaration,
2. Import declarations,
3. Class/interface declarations.

Yes No

Java source file names shall use
the prefix of the name of the class
or interface

Yes No

Java source file names shall use
the suffix: .java

Yes No

A Java source file shall contain a
package declaration specifying the
namespace to which the class
belongs

Yes No

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 50 of 71

A package name shall contain only
lower-case letters and digits with
no underscore characters

Yes Yes

CATEGORY RULE REQUIRED AUTO

NAMING

CONVENTIONS

A package prefix shall be
constructed by using the
components of the VA Internet
domain name of the host site in
reverse order

Yes No

The top two levels of the package
prefix shall be: gov.va.

Yes No

Type names (classes and
interfaces) shall use the
UpperCamelCase style

Yes Yes

Class names shall be nouns or
noun phrases

Yes No

Member variables shall use the
lowerCamelCase style

Yes Yes

Member non-static fields (reference
types, or non-final primitive types)
should use the lowerCamelCase
style

No Yes

Underscores or other special
characters should not be used to
separate words in member names

No Yes

Member variable names shall be
nouns or noun phrases

Yes No

Member non-static field names
shall be nouns or noun phrases

Yes No

The single character variable l (“el”)
should not be used

No No

Method names should use the
lowerCamelCase style

Yes No

Method names shall be imperative Yes No

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 51 of 71

verbs or verb phrases

The accessor method to get a
property of the class should be
called getProperty() where Property
is the name of the property

No No

The accessor method to set a
property of the class should be
called setProperty() where Property
is the name of the property

No No

The accessor method to test a
Boolean property of the class
should be called isProperty(), where
Property is the name of the property

No No

Constant variables should use all
uppercase characters

No Yes

Individual words in a constant
variable should be separated using
an underscore character

No Yes

Parameter names should use the
lowerCamelCase style

No Yes

Static variable names should use
the lowerCamelCase style

No Yes

JFC (Java Swing) variables shall be
suffixed by the type of the JFC
element

No No

Negated Boolean variable names
should not be used

No No

Exception classes should be
suffixed with Exception

No No

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 52 of 71

CATEGORY RULE REQUIRED AUTO

COMMENTS

Comments should not be enclosed
in large boxes drawn with asterisks
or other characters

No No

Comments should not include
special characters

No No

Source files should begin with a
comment that describes the class
and provides the name(s) of the
author(s)

No No

Block comments inside a function
or method should be indented to
the same level as the code they
describe

No No

A block comment should be
preceded by a blank line

No No

A single-line comment should be
preceded by a blank line

No No

Multiple trailing comments
contained in a section of code
should be indented to the same tab
setting

No No

The // comment delimiter should not
be used on consecutive multiple
lines for text comments

No No

Released source code shall not
contain TODO and FIXME
comments

Yes Yes

Classes, public methods, and
important fields shall be
commented using Javadoc style
comments

Yes Yes

Types with a scope of package,
protected or public should include
Javadoc comments

No Yes

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 53 of 71

Methods that are scoped at a
package, protected or public level
should include a Javadoc comment
that describes the method, outlines
the parameters and return type and
documents the exceptions thrown
from the method

No Yes

Methods which implement an
interface should use the @see tag
to refer to the documentation in the
interface

No No

Variables with a package, protected
or public scope should be
documented

No Yes

The first sentence of a Javadoc
comment should end with proper
punctuation

No Yes

Javadoc statements should have a
description

No Yes

HTML tags should be completed
and well-formed

No Yes

HTML tags should have
corresponding end tags

No Yes

HTML tags used in comments
should be valid Javadoc HTML tags

No Yes

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 54 of 71

CATEGORY RULE REQUIRED AUTO

CODING

Java source files shall contain less
than 2001 lines of code and the
maximum length of a line shall be
128 characters

Yes Yes

An anonymous inner class should
contain less than 41 lines of code

No Yes

A body of a method shall contain
less than 151 lines of code

Yes Yes

The maximum number of
parameters that can be passed into
a constructor should be 7

No Yes

The maximum number of
parameters that can be passed into
a method should be 7

No Yes

Operators that are used in a
statement that is continued on more
than one line should be the first
item on the continuing line

No Yes

The tab character (‘\t’) shall not be
used in Java code

Yes Yes

Java modifiers should be arranged
in source code in the following
order: public, protected, private,
abstract, static, final, transient,
volatile, synchronized, native,
strictfp

No Yes

A line of code shall contain at most
one statement

Yes No

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 55 of 71

CATEGORY RULE REQUIRED AUTO

CLASS DESIGN

Braces should be used around all
statements, even single statements,
when they are part of a control
structure

No No

A switch statement should always
include a default case

No Yes

Java classes that contain only non-
private and non-static methods
shall use an abstract, final, or have
an implementation modifier

No Yes

A Java class that does not have a
public constructor shall use a final
modifier

Yes Yes

The constructors of a utility class
shall be marked private or protected

Yes Yes

The maximum number of Boolean
conditions in a given expression
should be 5

No Yes

The maximum number of class
dependencies for a class should be
20

No Yes

The cyclomatic complexity of a
class should be less than 11

No Yes

Overriding the implementation of
the equal() method must be done in
conjunction with overriding the
implementation of the hashcode()
method

No Yes

Java code should not contain an
empty statement

No No

Inner assignments should not be
used

No Yes

A numeric literal should only be No Yes

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 56 of 71

used in an assignment to a
constant

Complex Boolean expressions
should not be used

No Yes

Import statements should contain
fully qualified type names

No Yes

Import statements shall not contain
a name of an Oracle.* package

Yes Yes

Classes and interfaces should only
‘include’ required packages.

No Yes

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 57 of 71

11 NAMING CONVENTION REFERENCE

IDENTIFIER
TYPE

RULES FOR NAMING EXAMPLES

Package The prefix of a unique package name is
always written in all-lowercase ASCII
letters and should be one of the top-
level domain names.
Subsequent components of the
package name vary according to an
organization's own internal naming
conventions. Compound statements
Such conventions might specify that
certain directory name components be
division, department, project, machine,
or login names.

gov
gov.va
gov.va.vha

Type (Class) Class names should be nouns, in mixed
case with the first letter of each internal
word capitalized.
Try to keep your class names simple
and descriptive.
Use whole words-avoid acronyms and
abbreviations (unless the abbreviation is
much more widely used than the long
form, such as URL or HTML).

class Patient;
class
PatientAllergy;

Interface
(Class)

Interface names should be capitalized
like class names.

interface
PatientDelegate;
interface Storing;

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 58 of 71

IDENTIFIER
TYPE

RULES FOR NAMING EXAMPLES

Method Methods should be verbs, in mixed case
with the first letter lowercase, with the
first letter of each internal word
capitalized.

run();
runFast();
getBackground();

Variable Except for variables, all instance, class,
and class constants are in mixed case
with a lowercase first letter. Internal
words start with capital letters.
Variable names should not start with
underscore _ or dollar sign $
characters, even though both are
allowed.
Variable names should be short yet
meaningful. The choice of a variable
name should be mnemonic- that is,
designed to indicate to the casual
observer the intent of its use.
One-character variable names should
be avoided except for temporary
"throwaway" variables.
Common names for temporary variables
are i, j, k, m, and n for integers; c, d,
and e for characters.

int i;
char c;
float
myWidth;

Constant The names of variables declared class
constants and of ANSI constants should
be all uppercase with words separated
by underscores ("_"). (ANSI constants
should be avoided, for ease of
debugging.)

static final int
MIN_WIDTH = 4;
static final int
MAX_WIDTH =
999;
static final int
GET_THE_CPU =
1;

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 59 of 71

12 JAVA SECTION 508 COMPLIANCE
The Department of Veterans Affairs is committed to providing accessible
electronic data and information technology to disabled Federal employees as
well as disabled members of the public seeking information and services from
VA. Software developers must design applications in a manner that will support
Section 508 compliance.
Designing compliance into the application is far easier than correcting an
application after the fact to meet Section 508 Guidelines.
The VA Section 508 site (http://vaww.section508.va.gov/SECTION508/) contains
general information about Section 508 and specific documents required for
submission to obtain conformance to Section 508.
The site also includes checklists
(http://vaww.section508.va.gov/Standards_Checklist_Artifacts.asp) to assist with
providing section 508 compliant products to include:
• Software
• Electronic Documents
• Websites
• Web Pages
• Multimedia
• Elearning Courses
These checklists include best practices for providing operating systems and
software applications including web apps, applets, plug-ins, and applications
required to use them (e.g. Flash, Java apps, media players) that conform to
Section 508.
Please visit the VA Section 508 site for the latest information.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 60 of 71

13 BEST PRACTICES
13.1 Logging Standards
Application logging should be well thought out and structured so that teams
maintaining the software have the information needed to troubleshoot issues.
Logging toolsets need to be addressed as well, preferring slf4j (www.slf4j.org) as
this allows the concrete logging implementation to be changed at deployment to
best suit the target environment. The recommended concrete logging
implementation is log4j version 2 (www.logging.apache.org/log4j/2.x/).
Developers should consider what data is required for proper troubleshooting and
only log PHI or PII data when necessary.

• Dynamically Adjustable Logging Levels
Logging shall be enabled for applications using Java Platform, Enterprise
Edition (Java EE) framework with a built-in support for JMX, such that
activation, deactivation, and level, can be controlled without restarting the
JVM

• Session Data Capture
Application logging shall be used to record session information useful for
troubleshooting, at info level, for applications using Java EE framework.
Meaningful attributes, to be recorded in log file, shall be extracted from
events such as login, useful VistA RPC calls, message transactions,
session termination for any cause, user privileges, CDATA from xml
packets, transport layer common services connection, and aggregate
data.

Logged data will reside on application server or database server
depending on architecture. Local storage devices and client workstations
shall not be used. The developer will work with data center administrators
to setup logs placement for secure access control.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 61 of 71

14 REFERENCES
[1] Gosling, J., Joy, B., Steele, G., “The Java Language
 Specification”, Addison-Wesley, 1996

[2] “Inner Classes Specification”.
[3] Reddy, A., “C++ Style Guide”, Oracle Internal Paper
[4] Skinner, G., Shah, S., Shannon, B., “C Style and Coding Standards”, Oracle
Internal Paper,
[5] “Java Beans 1.0 Specification”, JavaSoft.
[6] Pike, R., “Notes on Programming in C”, Bell Labs technical paper.
[7] Cannon, L., Spencer, H., Keppel, D., et al, “Recommend C Style and Coding
Standards”,
[8] Goldsmith, D., Palevich, J., “Unofficial C++ Style Guide”, develop, April 1990.
[9] Plocher, J., Byrne, S., Vinoski, S., C++ Programming Style With Rationale”,
Oracle Internal
[10] ISO Standard 3166, 1981
[11] Baecker, R., Marcus, A., Human Factors and Typography for More
Readable Programs,
[12] Kernighan, B., Ritchie, D., The C Programming Language, Prentice-Hall,
1978
[13] McConnell, Steven, Code Complete, Chapter 19: Self-Documenting Code
[14] Flanagan, David, Java in a Nutshell, O’Reilly & Associates, 1997, Chapter 5
– Inner Classes and Other New Language Features

14.1 Web Resources
Java Coding Conventions - Oracle Microsystems
Writing Javadoc Comments - Oracle Micrososystems
Java Programming Style Guide - David Wallace Croft
Java Style Guide - Catharina Candolin
Java Programming Style Guide - Java Ranch
Design by Contract – JavaWorld
StringBuffer Example Take Three – WikiWeb
Metrics for netBeans – netBeans
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-
135099.html#367 – Oracle Code Conventions
www.javaprogrammingworld.com/java-coding-conventions.doc - Java
Programming World
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html - Google Style
Guide

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 62 of 71

15 SO WHAT AM I?
The following job descriptions are humorous and insightful.
And yes we do have a sense of humor too!

JOB TITLE THE LOW DOWN

COMPUTER
SCIENTIST

They write code. It may not be the prettiest or most well-
factored code, but it gets the job done. It is not about the
design of the code or "good" practices; it is about proving
what they set out to prove.
A computer scientist is as much a mathematician as they
are a technologist (they have 31337 math skills), they
don't just need to know that stuff works, they have to
prove it.
Communication and people skills are desirable traits, but
not emphasized.
Software process and team dynamics skills are desirable
traits, but not emphasized.
They have a good breadth of general knowledge for their
whole field, but they deeply specialize in one or several
narrow areas.
In these areas they are considered world-class experts.
They work on stuff related to their research in their
personal time.

PROGRAMMER

Programmers write awesome code and make it clean,
well-factored and error free are very important concerns,
but not at the expense of getting the job done.
It is all about knowing the meaning of "good code" within
their domain. They need to have some math skills, but this
is not a paramount concern.
They need to know of good (best) solutions to problems,
but they don't need to prove it is the best solution.
A good breadth of algorithmic knowledge is imperative.
They have a depth of skill in a wide area of expertise and
have reasonably good knowledge of related areas as well.
Communication and people skills are desirable traits, but
not emphasized.
Software process and team dynamics skills are desirable
traits, but not emphasized.

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 63 of 71

They work on personal software projects they find of
interest in their off time.

DEVELOPER

They write code and make it well-factored and clean
(super important) but other factors often take priority.
Math skills are very much optional, but it does help to be
aware of common problems and solutions related to the
domain they are in.
Communication and people skills are paramount.
Process and team dynamics are bread and butter skills.
They are consummate generalists without any truly deep
specializations.
They are expert at finding ways around problems and
plugging components together to fulfill a set of
requirements.
In their personal time they are either trying to build the
next Facebook, or engage in activities that have nothing
to do with programming, developing, or computer science.

• Developers are programmers to a greater or lesser
extent.

• Computer scientists are programmers to a greater
or lesser extent.

• Enterprise software is the domain of the developer.

• The Googles and Microsofts of the world are after
programmers (and to lesser extent computer
scientists). The developers who end up there
become product managers.

• RnD and academia are the domain of the computer
scientist (and to a lesser extent the Programmer)

THE THING TO
REMEMBER HERE

Any title they call you is derogatory or "bad" in any way.
One is not more or less desirable than any of the others.
They are simply different dimensions (with some
crossover) of the field we are all involved in.
Particular personalities will identify more with one but that
does not mean that all three can't "bleed" into each other
and combine favorably.
It is entirely possible to be both an awesome developer
and a great Programmer (although it is difficult with so
many important things to focus on).

Java Programming S tandards & Refe rence Gu ide , Vers ion 3 .2

Page 64 of 71

Here are the real definitions as publically seen.
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Computer_programmer
http://en.wikipedia.org/wiki/Software_developer

